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Modulation of water waves through an uneven sea floor
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ABSTRACT: Transformations of finite amplitude

floor were studied both numerically as well as experimentally.

were carried out in two steps.
tion. Solutions thus obtained were then used
wave analysis.

progressive waves due to an uneven sea
The numerical analyses

Linear wave theory was used as a first order approxima-

as initial conditions for the nonlinear

As a verification of the numerical results, experiments were then carried

cut in the laboratory of the Department of River and Marbour Engineering of the National

Taiwan Dcean University.
present results.

1 INTRODUCTION

Transformation of finite amplitude waves
passing an obstacle or an uneven sea floor
has been studied previously by many rese-
archers. However, one of the main difficul-
ties encountered in the numerical analyses
is that, the boundaries and/or domains are
sometimes not continuous. In this paper,

a numerical method proposed by Chou et al.
{Chou et al., 1988) was adopted to overcome
this difficulty. Analyses have shown that,
the boundary element method used could nut
only handle problems of complex terrains
more efficiently, but alse reduce the com-
putation time and memory storage.

Three kinds of asca floor topography wore
used for the numerical modeling. These are:
a submerged dike of trapezoid shape, a gen-
tle sleping beach, and a steep bank. It
were found that, as wave shoals, its wave
length shertens and its amplitude accumul-
ates as compared with its values for the
deep water case. These results are in
satisfactory agreement with experimental
results available. It seems that the numor-
ical procedure proposed im this paper pro-
wides an efficient method in calculating
wave transformation problems of similar
category.

2 SMALL AMPLITUDE WAVE THEORY
Consider a region of water having finite

depth, h, and bounded below by an imper-
meable sea floor. Cartesian coordinates,
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The agreements are satisfactory.

This paper summarizes the

(x.z), are applied, where the z-axis is
directed positively upward, and z = 0 is
the undisturbed free surface. For simpli-
city, the region was further divided into
three sub-regions, I, II, and III. Both
sub-regions I and III have constant water
depth, whereas in sub-region II the water
depth is arbitrary. Sub-regions I and III
are assumed to be beyond the disturbances
caused by the sea floor topography. As
shown in Fig. la, the origin of the coord-
inates iz located in sub-region II, where
the left side is unbounded. In Fig. lb,
on the other hand, the left side boundary
coincides with the origin. The usual assump-
tions of water being inviscid, incompres-
sible and wave motion irrotational have
being adopted here in the analysis. Waves
arriving from the right hand side of these
Eigures are of small amplitude type, having
a constant frequency g and amplitude T, .
Due to the assumptions made earlier, fluid
motions of all sub-regions will, therefore,
have velocity potentials which satisfy the
Laplace eguation. These wvelocity poten-
tials can be expressed as: @ ( x, z; € )=
Blo/o P (x,2) exp{ diet)

2.1 Velocity potentials in domain I and III

Consgider Fig. la where the two imaginary
boundaries are assumed to be located far
away from the origim. Since sub-regions I
and III are assumed to be beyond influences
of the sea floor topography, one has @, [(®x,28)
for the sub-region I:




pilEm)= (2.1)
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where R, i the horizontal distance beéetween
the imaginary boundary I and the origin o
of the coordinate, k is the root of g htfg

= kh tanh{kh). The firat term in paren-
thesis on the right side of Eg. (2.1) is

the potential function of the incident wawve,
and the second term is that of the reflect
ed, both in complex forma.

On the imaginary boundary, where x = &,
the potential function and itse normal deriwv-
ative in the positive x-direction are given
by:

el é,z)=C(1+g 3= (2.21

cosh kh

il zr=1dk( 1 —g¢ )%E—zl[z,n

Zimilarly, the potential function on the
imaginary boundary of the transmitted re-
gion, i.e., in the third region, x = - l; ,
together with its normal deriwvatiwve in the
negative x-direction can be expressed as:

cosh kigh4 z) ]
v:{x-zl=sﬁ;em(“+£'} cosh KER (Z.4)

s = cosh kK + z)
il Eg.z_‘l—-%——’:—ﬁéﬁr 12.3)
%{—£=.5}=—1W=59%%;—1Fl {2.6)

where K' is the roat of g gh/g = k'qh tanh
[k'"gh). As for the case shown in Fig. lb,
due to the assumption of an impermeable
boundary on one side, the transmitted term
ig identically zero.

2.2 The governing eguation and the boundarcy
canditions in sub-region II

i) Under the assumptions made, the govern-
ing equation for small amplitude waves is
expressed asg:

atg | alg
% tazr = 0 (2.7}

1i} The [ree surface boundary condition.
A combination of the kinematic, dynamic
boundary conditions bogether with the re-
gquirement of constant pressure yields:

F=ea B0 (2.8)

iii} Velocity normal to the impermeable
gaa flaoar should be zero:

ad 3w =0 (2.9}

iv) For the case shown in Fig. lb, the
velocity normal to the impermeable boundary
is also zeror

ag /9w =10 {2.10)

2.3 Dynamic boundary conditions on the im-
aginary boundaries and the coefficients
of reflection and tranamission

In sub-regions I, II, and III of Fig. la,
the regquirements of continuity of mass- and
energy fluxes yield:

L, 2l=pm(Hh,.2) (2.11)
Pla.23=m (&.5) (2.12)
Pl z)=¢:(-b1,2} {2.13)
$(-tr,2)=ps( -8, 2) (2.14)

Subatituting Bg. (2.2) into Egq. (2.11},
multiplying cosh k{h+z}, and integrating
from 2 = -h to 2 = 0, one then has the re-
flection coefficient, ¢y, in terms of the
potential function ¢, , as:

k 0
#1 = zinh %h khj‘_h'i' cosh k{ h+z }dz-1{2.15)

where
1, = #(1 + 2kh/aihh kh)

The coefficient of tranamission is acquir-

ed by substituting Bg. (2.5) into Eg. (2.13),

multiplying with cosh k°(gh+z), and inte-
grating from 2 = =-gh to 0. It has the
following form:

K o .
s :m.[ ¢ cosh k'{ghtz jdz (2.16)
gh

wherea

N, "= #(1 + 2k'ghfsinh k'9h)

2.4 The Green's function

hecording to Green's secopnd identity law,
the wvelocity potential of any arbitrary
point (x,z) inside domain II can be deter-
mined by the velocity potential on the
boundary together with its first normal
derivative, that is:

fix, 2)

=EIFLTL me—¢$(&. ) 500N 1lds
(2.17)




where # (£, y)is the potential function on the
boundary of domaim II, ag¢(f, ) favis the
first normal derivative, and In(l/r) is the
solution of Laplace equation. r is the dist-
ance between any interior peint within domair
Il and a point lecated on the boundarcy. The
velocity potential for any boundary point,
(E,n) , is then expressed as:

¢l .y
{2.18)

d ’
.[ [mfn— —$(E, :s)-a?—utzn%;;jds

2.5 Discretization of the integral equation

Dividing the curves enclesing the sub-regicn
II into N small segments counterclockwise,
then the physical gquantities in each segment
can be treated as to have lnear variations.
It follows that, Eq. (2.18) can be written
in the following form:

Bl m)

H
+TIE1I ,w‘ (6,70 Makdyan (€, 9)-M, ) 2 sntas

o B ;. 2:19)
—E) (B (s n )Mk P (€52 -Ha D gn—de

=1 iy T
where M. and M, are weighting Functions.
(2.19) can be expressed in a matrix form:

Eq.

(¢)=(01(%) 20
Dividing the curve enclesing the sub-region
Il further inte: the first imaginary bound-
ary, the free surface, the second imaginary
boundary (for the case shown in Fig. 1lb, this
equals to the impermeable boundary), and the
sea floor, and with their velocity potentials
and normal dnrlvutlvaa _expressed as: dy

V By,

» &
¢4 . 'r’:i . rﬂspactlvaly. one
has

!“:I u‘l:l D1! D:Il u‘:u FI.
2 Oni Om Owm  Ou e
= (2.21)
#a Dy, Dy Oy T ?'-g
A Gn Oz Ou Du A
where the number of segments of these bound-
aries are Nlr NZ' H3 and N¢, regpectively.

2.6 The velocity potential for small am-
plitude wawves

For the case shown in Fig. la, substituting

az

of Eq. (2.15) into Eg. (2.3}, and from Eg.
{2.12) one has the normal derivatives af
the veloacity potentral for gach nodes on the
boundary x = g, , given by:
$i (P1=72j kMtzL
sh kh

+3 5 (0 (r, p) -2 (2.22)
where
ik® cosh k{h+Zr)coshkih+Zp)
£ fr,p) = W, sinh kKh cosh Kh
Similarly, substituting Eq. [i.lﬁj into Eg.
(2.6) and from Eg. (2.14), one has the
normal derivatives of the wvelocity potential
for each nedes on the boundary x = —Ez:
—_ ]
!ﬁa{q}:glfacr.qu, (r)-hz, {2.23)
wherea
v 1 1
R . ik'® cosh k'(gh+Zrlcosh k'(gh+Zq)

My 'sinh E'qgh cosh k'gh

Writing Ega. (2.22) and (2.23) in matrix

Eorms:
(8.} = {Z} +(F} {s) (2.24)
{Fl=fi(1, j).tg
{1i;j=1~H,)
{#:1} = {R}{e) {2.25}

(R} =1 (1, j)- iz
(i51=1~N, )
After substituting Egs. (2.8), (2.9},
(2.24) and (2.25) into BEg. (2.21) and rear-
ranging, one has then a linear system of

egquations for the velocity potentials of
small amplitude waves on the boundaries of

gub-region II in Fig. la:

O F'-1 O, o2y Oy k" ] # a,

ClmF' Cggrig-1 Oy R" o L Oy ']
Of Opet/e Og-1 o | l&| o,
OyF* Dﬂcrg.r‘s O,R" -1 L gy

(2.26)

Which can be expressed more compactly as:




‘I 'D'I'I
¥ T b @y (2.27)
‘J nh
"4 oll
O F-1 Ogeiiy O 0
- O.F" DOge/e-1 Qe 0
OF  Queify  O.R-1 0
Ouf'  Opol/s  Ogb' -

Egq. {2.27) can be used to calculate the
velocity potentials of the nodes on the
boundary. The free surface elevation on
these nodes can be calculated from:

it

1 a
L --—-._El =-idt. e

i (2.28)

For an incident wave with prescribed
amplitude, L, phase, Ot, the surface eleva-
tions on each node can thus be calculated
accordingly -

For the case of standing waves shown in
Fig. lb, there are only two sub-regions,
enclosed by an impermeable left side, welo-
city potentials on the boundardies of Fig.
lb can be acquired, by substituting Egs.

{2.8), (2.9), (2.10) and (2.24) into Eq.
{(2.21):
0,F'-1 0,08k 0 0 # Oy
OF"  Opa?/e-l 0 0 S | 2°]
0Ff" Ogpez -1 0 4 o
OfF DOgpeife 0 -1 #y %
(2.29)

where free surface elevations can
ated using Eg. {(2.28).

be calcul-

1 FINITE AMPLITUDE WAVES

Transformation of nonlinear waves was stu-
died using linear solutions derived earlier
as initial conditions. Together with the
full free surface conditions, they were
substituted into Green's integqral eguation.
It is rather difficult to cbtain analytic
solutions for the reflection, as well as
transmission, coefficients of finite ampli=-
tude waves. This difficulty was avoided by
using the Sommerfeld radiation condition

on the imaginary boundary of subregion II.

3.1 Boundary conditions

i) The dynamic and kinematic boundary con-
ditions on the free surface are:

322

ad 1 a2 ad 2
— e f—) s [ ———) ] +gL=0 (3.1)
at 2 Ix az

atl ad 3 d sl
ay

(3.2}

at az 4%
ii}) Radiation condition on the imaginary
boundary
To calculate surface elevations due
finite amplutide waves, the Sommerfeld
radiation condition is applied for the im-

aginary boundaries in this study:

to

ad k ad

= - . ¢ =1y (3.3}
ax o at
ad . k@ ,:=;l= (3.4}
ax o at

For the case shown in Fig.
(3.3) is applied.
iii) At the impermeable sea floor:

lb, only Egq.

ad S ap=0 {3.5)
iv) For standing waves in Fig. lb, on the
impermeable bank:
[3.6)

a2 =0

3.2 Finite differentiation

i) The free surface boundary conditions

Expressing #9/8x,8%/8z of the fres sur-
face boundary conditions in terms of com-
ponents normal and tangential to water
surface:

ad a E
g —ginf - cos B (3.7}
X 4n a5
ad a s a
—_— —— gogf + — sinf il
Az an 35

where £ is the angle between adjacent nodal
points of the free surface and the horizontal
axis. Substitution of Egs. (3.7) and (3.8}
into Egq. (3.2) and rearranging, one has the
nonlinear free surface elevation in a finite
difference form:

at 1
J i 2

=k+] 1
(& 1+

=
) ® 3] (3.9)
cosf

cos o

The nonlinear welocity potential and its
noermal derivative on the surface are related
by:

[5 +] I=e k+1 e ¢h'] ]
2 — . —_— - — (3.10
i 3 T T




where a, b, and © are given asa:
k 2 { ?I
a= @ -meat-l - 1/2.g- (at) -
d J cos 8
(3.11)
glar) at —k
En -—{ ® )
Zeos A 2 J 13.12)
tid mk
.- 4 J J-1] (3.19)
2 {as)?

ii) The radiation conditions
The radiation conditions can be discri=-
tized into:

= k=] k+1
(@ )} =[=( ¥ +I[d] jfe
il i SR
—=k+ k+1
e T T BN R T
J I b I B |
with d and & known constants:
k -k oAt
(d) =(d ) +(@® )+ (—)
Joed 4.1 il -2k
k -k o At (3.186)
M) _=(@) +(® ) (—=)
I i ¥ J I -2k
orat
g =
2k
aat (3.17)
g =
2k

In the equations given above, the subscripts
1 and II denote the imaginary boundaries I
and II, respectively. For the case of Fig.
lb enly Eg. (3.16) is used.

3.3 Solution of the velocity potential faor
Finite amplitude waves

In a way similar to those described in Sec.
2.4 and Sec. 2.5, by substituting Eqgs.
(3.10), (3.14) and (3.15} inte Eg. {(2.21],
one will have a linear system of eguatians
for the velocity potentials of finite am-
plitude waves on the boundaries:
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(3.5},

= 1-e [
=0 fesT QL= a{=—} ] v s o
0, fe L b Jel Oy &
P
-0, fe o,,[t—l e R
o
3
-0,/ onu—-]a»:TH -Oyfel 0 &,
[
-0, a J———J* —) ] = i =1 &,
Oy T ' (]
Oy Oy Og| |d /e
o, O
= | O:: E“ /b
Om ;
i {3.18)
Dy O Oy i

Splution of this eguation leads
the nonlinear wvelocity potentials
derivatives on the nodal points.
face slevations can be calculated
[3.9).

For the case shown in Fig. lb, one may
substitute Egs. (3.5}, (3.6), (3.10) and
{3.14) into Eg. (2.21)} to get a linear
system of equations for the velocity poten-
tials on the boundary:

one to
and their
Frea sur-
from Eg.

- €
-0, /a1 Ol {—J e 8t TR TR o,
e
-Gzl'lll' E]z:[f——:l H:T]*l | 0 Py
Q _# Q i]1? ftJ 1 1 a
-0 /e Sl ey i
N n* b R T &y
=
-0y e EI:'-—J' +{—) -1 L2
ft G :
LU I
10y 02 -d'I.-'a
O Ui
a'b [3.19)
Ogp Caa

Eg. [3.19) is be used to calculate the non-
lipear velecity potentials on the nodal
peints. Normal derivatives of the velocity
potentials and free surface elevations can
be calculated using Egs. (3.10), (3.14),
{3.15) and (3.9).

4 THE NUMERICAL ANALYSES

Figureas 2a, 2b, and 2¢ show the cases stu-
died in this paper. Optimal computational
effort could be achieved, when the elements
of the free surface and sea floor both have
the same discretization length. For numer-
ical stability, this= length must be smaller
than 0.2h, with h the water depth in the
sub-region I.




The dimensionless period of the incident
waves was chosen te be g2hfg = 0.25 ~ 1.0.
Wave heights were set uniformly egual to
Lo/h = 0.05. In the Figures shown below,
surface elevations are calculated from
Einite amplitude waves. They were plotted
in a time interval of T/B to demonstrate
the changes within a half-period.

4.1 Gradually varying sea floor

Fig. 2a shows, schematically, a gradually
changing eea bottom. This was used to
demonstrate the influences of sea floor on
wave evolution. Water depth in the sub-
region III was assumed egual te gh = 0.25h.
Four bed slopes, 5 = 0, Sh, 10h, and 20h,
were Studied. Humbers of discretization
for the free surface and sea [loor were
varied accordingly, for stability reasons
mentioned before. Table 1 lista the number
of segments used for each case. Changes of
water surface elevations, as the waaves,
withg?h/g = 0.25, 0.5 and 1.0, passing over
various sea floors conditions are ahown in
Figs. 4, 5, and 6, respectively.

These figures demonstrated that, as waves
shoaled, wave heights increases with decre-
asing wave lengths. Wave set-ups in shallow
water reglon are also clearly evident in
these figures.

4.2 The case of a submerged trapezoidal dike

For the case of finite amplitude waves pass-
ing a submerged trapezoidal dike, Fig. 2b
shows a definition sketch. The two imagin-
ary boundaries are both located at distances
10 (ten}) times the water depth away from

the base of the dike. In all calculations
presented here, the dike was located at a
depth gh = 0.25h below water surface. The
width is B = Zh. For rectangular shaped
dike, changes of surface elevations are
shown in Figs. Ta, 7b, 7c, and Td for dimen-
sionless periods o*hfg = 0.25, 0.5, D0.75

and 1.0, respectively. Figs. 8a, 8b, 8c

and Bd are for the case of trapezoidal dike.
The length of the slope was 10h. Dimension-
leas periods are the same as before. FProm
these results, it is evident that, rect-
angular shaped dikes affect the evolution
processes more profoundly tham trapezoidal
dikes. Partially standing waves Are seaen

to farm on the dike, and waves that passed
through the dike are smaller, as comparead
with the case of trapezoidal dikes.

4.3 The steep-bank

Figs. %a, 9b, and 9¢ show results of waves

approaching a steep bank for dimensionless
periods gih/g - 0.25, 0.5, and 0.75%, re=-
spectively. The shallow water region has

a depth of gh = 0.25h, and the horizontal
length of the sloping beach is s = 10h.
These Figures show that water levels were
aroused, which are characteristic for finite
amplitude waves.

5 THE EXPERIMENTS

The experiments were conducted in a wave
flume, located in the Harbor Engineering
Laboratory of the Depacstment of River and
Harbor Engineering, Mational Taiwan Ocean
University. The wave flume is 50 m long.
1.8 m wide., FPFiston type wave generator

was used to generate incident waves. Sur-
face elevations was measured by capacitance
wave gauge. A wave recorder was also used
to record the wave forms simultaneously.

For the case shown in Fig. 2a, water
depths in the shallow water region were
kept equal ta g = 0.1 and 0.2. The height
of the "sea floor®™ in this region was fixed
to equal to 36 em during the experiment,
for experimental convenience. Water was
then filled into the wave flume until a
depth of 40 cm (g = 0.1} or 45 em (g = 0.2)
has been reached. The slopes of the beach
ware varied from s = 0, 2, to 4. Fig. 3
shows these experimental configureations
schematically. Three nondimensional periods,
rihfg = 0.3 and 0.5, were chosen for
incident waves. Wave heights were selected
usging the criteria that: they will not break
when reaching the region of wvariable depth
or in the constant-depth shallow water rae-
tion.

Initially, the wave gauge was installed
1 m away from the intersection point of the
glope and the sallow water region. It is
believed that, here in this lecation, dist-
urbances caused by wave shoalling are re-
latively small. After the passage of
appraximately two or three waves, recording
was initiated, while, simultanecusly, wave
gauge was shifted slowly in the direction
of wave propagation. The travel speed of
the wave gauge was kept much smaller than
the wave celerity. In this way, the maxima
and minima of the surface fluctuations in
the shallow water region could be detected.
Az a result, the envelope of these progres-
sive waves in this region was determined.
In all the experiments conducted, the dist-
ance of the wave gauge movement was & m,
approximately.

Since the movement of wave gauge was kept
slow, to avoid possible interferences caused
by reflected waves, the experiments were
conducted sStepwise. Waves were generated




cnly for approximately 1~ 1.5 minutes.

After the passage of these waves, wave gauge
was stalled, to be reatarted for the next
experiment from here. Wave envelope was
then synthesized from several measuring
Steps.

5.1 Comparisons and discussians

The experimental results are shown in Figs.
10b ~ Zlb. Shown in these figurea, are the
relatiocns between wave envelope and the
coordinates of x-axis in shallow water re-
gion. Straight line connecting the points
indicated by o ia the still water lewvel
{8WL). Curves connecting the peaks below
the 5WL are the envelapes for the crests,
whereas those connecting peaks above the

SWL are the trough envelopes. As is clear
from these figures, vertical distances bet-
ween SWL and crest envelopes are larger than
those between SWL and trough envelaopes.
These are indications that, after passing
through the wariable depth regiocn, these
incaming waves tend to raise the mean water
level. These were also demcnatrated by the
numerical calculations. Another interesting
fact is that, envelopes in theae flgures
show little variatiens, which indicatea that,
when waves arriving in the shallow water
area, there is not much changes in the enercgy
propagation. However, in some of our exper-
iments, wave envelopes do have a tendency to
decline in the far left end (%ee e.g., Figs.
12b and 20b). It is conjectured that, when
wave reaching this area, they were subjected
to the effects of bottom Flooar and reflec-
tion, which all tend to diminish waves by
their own ways.

As comparison, numerical analyses were
also carried out using the same nondimen-
Sional pericdas: othjg 0.3 and 0.5,
with same slopes variations: s = 0, 2, and
4, together with the depth relations: gq =
D.1, 0.2, The results are presented in
Figs. 10a to 2la, in time intervals of T/B.
In theae figures, surface elevations re-
sulted from solutions of finite amplitude
WaAves .

Ag can be seen, the agreements of the
characteristics of surface variations bhet-
ween these results are rather satisfactory.

6 CONCLUSIONS

Boundary element method has been applied to
study deformations of finite amplitude waves
passing variable sea floor topography.
Humerical results were compared with exper-
iments, the results are in satisfactory

agreements. It is thus concluded that, fFor
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studying wave transformations due to sea
floor topography, boundary element method
is an efficient method to apply.
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Table 1 Number of the segments used for
the cases studied

-] Hl NZ H3 N‘ Total
] 10 o0 10 120 240
5 10 125 10 135 270
10 10 150 10 150 3i0
20 10 200 10 200 420

(b) origin eon sub-region II

Fig.l Definition aketches for the casas
studied.
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(d] 5 = 20h

Fig.4 Water surface undulations for wvarious
bed lopes. Water depth gh = 0.25h,
incident waves with dimensionless fre-
quancy ofhfg = 0.253; dimensionleas
amplitude [, /h = 0.05:
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Fig.l0 Calculated water surface slevations
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results for the case of a steep bank.
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Fig.ll Calculated water surface elavations
in comparison with the axperim-ntal
results for the case of a steep bank
ih/g = 0.5; ¢ = 0; and g = 0.2
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Fig.1l2 Calculated water surface elevations
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Fig.1l3 Calculated water surface alevations
in comparison with the experimental
results for the case of sloping beach
Fihfg = 0.5; 5 = 2h; and g = 0.2.

330

; mmmmmrmmmm;

xih
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Fig.ld Calculated water surface alevations
in comparison with the experimental
results for the case »f sioping beach-

ri*h/g = 0.3; 5 = 4h; and g = 0.2,
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Fig.l5 Calculated water surface elevations
in comparison with the experimental
results for the case of sloping beach
rihfg 0.5; s =4h; and q = 0.2.
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Fig.20 Water surface elevations for waves
passing through a sloping beach. With
oihfg = 0.3; 5 = 4h; and g = 0.1.
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Fig.21 Water surface elevations for waves

passing through a sloping beach. With
¢ih)g = 0.5: 8 = 4h; and q = 0.1.
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