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Ship motions near harbor caused by wave actions
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™ ABSTRACT: Around the harbour, waves affected by seabed topography as well as by break-

water could cause additional problems for ships sailing in this area.

Motion of ships

due to these waves was studied in this paper through a boundary element method. As
verification of this methed, wave-induced ship motions in the open seas were also cal-

culated and compared with those of Ijime.

1 TNTRODUCTION

It is well known that ship motions are in-
fluenced by wave actions. Although studies
of ship moticns in the open ses have been
carried out, but there are relatively few
articles concerning the impact of wave
forces upon ships arcund the harber.

Hear the harbor, waves are affected by
the seabed topography. In addition, the
interaction of incident and reflected waves,
due to presence of breakwaters, can produce
short crest waves in this area. Ship
moLions in this area are, therefere, plau-
gibly different from those in the deep sea,

In this paper this problem is analyzed
numerically. The ship is subjected to the
action of waves, which are aroused through
the presence of both seabed and breakwater,
To simplified the analysis, the ship is
taken to be rectangular in shape, and the
harbor is enclosed by straight break-waters.
Ship moticns under the impact of waves hawv-
ing various periods and directions were
studied. As a verification, this method is
then applied to salve the open sea case.
Comparison with the results cbtained by
other authors showed satisfactory agreement.

Z THECRETICAL AMALYSIS

Consider a region enclesed by the harbour,

the breakwaters and the open sea, as shown
schematically in Figure 1. Cartesian ceor-
dinatea, (x,y,z), were chosen, with z = 0

the undisturbed free water surface, pointa-
ing positively upwards. Away from harbour,
where wave scattering due to breakwater and

The results are in satisfactory agreement.

harbour are negligibly small, an imaginary
boundary, I, ,Wwas drawn. The region under
conaideration were then be further divided
intc two sub-regions: an outer sea reglon,
I, and a harbour region, II. The fluid is
assumed to be inviscid, incompressible;
wave motions are irrotational, and capill-
ary effects are negiected.

Conaider a small amplitude wave with a
constant frequency, o, (=2n/T, T is the
wave period) and amplitude &, arriving from
infinity. Fluid motions in these sub-
regions will both have velocity potentials
@ix,¥y,2;t), and is expressed as:

&5a

o

D(x,y,z,t)=—"F(x,y,z)e*" (1)

where g 18 acceleration due te gravity, and
@i{x,¥,2) must satisfy the Laplace equation:

é*g " i

g
+ dy* Gzt

ax®

=0 (2}

2.1 Velocity potentials of the outer sea
region

The outer sea region I, assumed to have a
constant water depth, h, is enclased by a
boundary 5 , coast lines AB, GH and a
boundary at infinity. The veloclty poten-
tial of this region can then be separated
inte two functions. The first one is depth
dependent and is assumed te be known. The
second, yet unknown, function depends on
its location and is a result of superposi-
tion of the incident and reflected waves.
The potential functions of this region can,
therefore, be conveniently expressed as:
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where k is the solution of ®hfg =
kh tanh kh, f° and f* are the potential
functions of incident and reflected waves,
respectively. The reflection is caused by
the presence of the harbour, the ship and
breakwaters.

When incoming waves bisect the x-axis
with an angle w, the resulting surface
elevation, & (x,y;t), can be expressed as:

Lolx,y:;t)=Cocos( k{xcosw+ysinmI+ot )
(xse0 ) (4)
with the velocity potential:
i, yl=—i-exp(—ik({xcosw+ysinw)] (5)
Substitution Eg. (3) into Eg. (2Z), one

gets an equation for f* which satisfies the
Helmholtz equation with the form:

(6)

For the outer sea region, waves reflected
from the coast lines AB, GH, can be taken
as zero due to the assumption made. As for
the reflected potential from the imaginary
boundary at infinity, which satisfies the
Sommerfeld radiation condition, cam also
be considered as vanishing small. The re-
flected potential funetion for any point,
f*{x,v), whthin domain I can thus be found
through the application of Green's integral
technique, and is given as:

a i
[* Y= Lre¢e, —_—f — = H'"
e lx,y) fﬁl £ ﬂjau{ ik CkR 3 )

i E]
- { :!h“'(ku}}i;ﬁ'ié.?}}dS{H

where f*(E,n) is the potential function
specified by the geometric boundary of
domain I, @f*(£ %) /v is ths first normal
derivative (directed positively outward).
H,"(XR) i= the zeroth order Hankel function
of the first kind, v the unit normal vector.
R is the distance between the point under
consideration and the boundary. R-=
(x=E)*+(y=-n)*. Within the boundary, c
equals to 1, but will have a wvalue of 0.5
on the boundary, which are due the char-
acteristics of the Hankel function.

In the following numerical analysis, the
boundary I, , where ¢ = 1/2, is divided into
N segments, each with constant element, and
Eq. (7) is rewritten in the matrix form:

{F*Y=[K*1{F"} (8)

where {F*} is the potential function of the
boundary and {F*} its normal derivative.
[K*] is a coefficient matrix, related to
the shape of the geometric boundary (Chou,
1983).

2.2 Velocity potential of arbitrary water
depth region

The harbour region II, with arbitrary water
depth, is a closed three-dimensional domain.
It is bounded by the imaginary boundary, Ty,
the free surface, Iy, the immersed ship
surface, Ty , an imaginary boundary of the
basin, Iy, the breakwaters, Ty and I, , and
an uneven sea bottom, I .

According to Green's second identity law, _
velocity potential of any point inside this
region can be determined by velecity poten-
tial on the boundary and its first normal
derivative, that is:

1

=7

cﬁcs.rizj=j-;ice,=:.c}c71: =

N
—$C8,0,0)5 (= g2 1dA (9)

where R = v(x-E)® +(y-n)+(2-C), and ¢ =1
for points inside the boundary and is egqual
te 1/2 on the boundary for the same reason
mentioned before.

Dividing the surface of the boundaries,
i =~ I; into N; te N;discrete areas with
constant element, the integral can then be
transformed into a matrix form ready for
calculation:

{¢l=(K){9}

where both {$] is the potential function
of the boundary and {§} its normal deriva-
tive. [K] is a coefficient matrix, which
is related to the shape of the geometric
boundary (Chou, 1983).

(10)

2.3 The boundary conditions

The boundary conditions are summarized in
the following:

1) The free surface condition, given by:

)
?:Tﬁ % =0 (11}
2) The condition at the sea floor:
$=0 (12)

3) The requirements of continuity of mass
and energy flux on the boundary I, is ex-
pressed as:

$eCE,2,0)=9CE,7,8)
$.(E,9,0)=0CE,7,0)

{13)
(14)




Together with Eq. (3), Eq. (13) vields am
equation of the form:

JﬂECE.’L{)ENhk{1+h)dz

cosh®k{z+h) di

=I Cr* e, 0 +f%CE, 1) e

Dividing the surface of the imaginary
boundary, I , into n segments vertically,
and m segments horizontally, one then has
m x n elements for the divided surface I, .
JHormal potential of the reflected wave at
any position on the boundary can then be
calculated through:

F*CEe, B )=

k 2=
m;§L¢(E| s T ,C.‘}cushk{x,+h)bz;

_F{'Ei:‘?ljiizlrzr """ ,,I'.ﬂ} {IEJ
where Ha = 0.5(1+2kh/sinh 2kh).

Substitution of Eq. (3] into Eq. (14},
one has:

T T P T
L T L N L6 (aa 3 3

coshkh
(i=1,2,ww ymxn ) (16)

Combining Eqs. (8), (15) with Eq. (18),
rearranging, the following matrix express=
sion can be obtained:

[} =(R){F-KF}
+e (RICK*I(Q){é} (17}

where ¢ = k/Nssinh kh subscript 1 denotes
the boundary Ty, and [R], [Q] are coef-
ficlent matrices given by:

(R)=
coshk ( 2w +h}
coshkh

coshk( Z2u+h)
coshkh

coshk Cza,+h3 | 1187

0 cashkh

coshk { Zaa +h)
coshkh

(D=

coshk (2o +h Az, --coshk {2 +h Az

coshk { 2ai+h A2, v €08 bk [ 2aw 4 h YAz,
(19}

4) By mssuming that the breakwaters are im-
permeable, one has the boundary conditlon:

$LE,m,Lr=0 (zo)

5) The main propose of this paper is te
analyze wave induced ship motions near the
harbour entrance. To simplify the preblem,
conditions within the harbour basin will
not be considered. An imaginary boundary
within the harbor basin, away from the
entrance, ia thus chosen. To save comput-
ing expanses, it is further assumed that,
waves impinging I, will not be reflected
back again. Under this circumstances, the
boundary equation is similar te the Som-
merfeld radiation condition, and is given
by:

FeE,.m,la=ikg(E, 0, L) (21)
6} Kinematic boundary condition on immersed
ship surface

When subjeeted to'wave actions, aship dis=
places away from its center of gravity,
(K ,¥a 150 ), to a new position (% ,¥ .24 ).
The small quantities, as it rotates with
respect to the (x,y,z) axis, are dencted
as 6 ,8,, and & . The position Llx,y;t)
of the immersed ship surface can be calcul-
ated using:

=
—((x—Ty+h(y-Fe)-FCz—z ) ]k,
“((y=-TFod+Nhiz=5)-5 (x-%e 2] L,

+0(z—Ze dFBa (x=Ta =8, (y=¥e 3] (22)

since

df fdt=ul,.+vL,+wl. +L, =0 ({23)
where u, v, and w are velocity vectors in
the usual sense. Which can be rewritten
in the form of a velocity potential as:

Pl 4+, 8, —-D.4+L, =0 (24)
where £_, L and =1 can be treated as normal
vectars of the submerged portion of the ship
at eguilibrium about the x, y, and z direc-
tions, respectively. The surface boundary
condition can then be expressed as:
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When subjected to the action of waves, the
ship will oscillate in accordance with the
frequency of the wave. Expressing the dis-

placements of the ship body as: E*, n* and
L* and the rotations as ", &, and '

one then has the following relationship be-
tween (%, Yo, %) and (%, Fo. To):

Xs = il + E-l.'_"]

Yo = Fo+ grerer (26)
Ty = To 4+ LTt

B, = w et

8y = wy™e='n (27}
8y = antet

When a ship is displaced from eguilibrium,
there will gravity, dynamic pressure due to
fluid motion, and the restoring force, R.
The components in the x-, y-, z-direction
will be denoted as R_, R and R, (where R
= B and Fz ({whare Rx = = 0 15 assumed].
In eimilar way, the mOmgnt: due to restor-
ing force R can be expressed as M , M , and

M (where M = 0). Then, to the Birst appro-
ximation, we have the following equations of
motion:
b
d®x, ax
m ETE ij'é':-dr
_” _dr > 128)
m dt' _ij—dF+R
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where m is the mass of the ship, and I , I

and 1_ ara the ccmponents of the inertlial ¥

moment through the center of gravity. The

restoring forces It and moments Mu. M are

given by: ¥
Togather with

Fxe r a4, 4
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and using Eqs. (26) and (27}, as well as the

relation p/pgls = ighexp(-iot), Egs. (28) and
[29) can be rearranged yielding:
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Substituting Eg. (1) apd BEgs. (32) ~ {36)
inte Eg. (25), then the velocity normal tao
the surface of the ship ¢an ber ahtainad =--

i
T
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The immersed ship surface is divided
into K; elements for the caleulation, and
Eg. (37) ia expressed in matriz form as:

(#)={k}(¢) (38)

where

{ k. }=air+hlf+cij+d“-+£”

(39)
Cisj=1,2,- N3
and
Ay =
dx dy
= _-[(31-) {a }'+(5‘ Ty (‘—]f]dr_- ~
a? dz 4z
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8 _ & -
. ['FE'(!I—M J—'é-:'r{. ¥—¥e 3 1.dT,
A
(40}
2.4 The system of egquations
Together with the boundary cenditions,
Eg. (10} yields a system of linear equa-
tions with respect to @ and ﬁ:
# ki kg ki ko ki ke ks #,
[ ka ks ke ke ke ke ki r
P ke ks ki ke ke ki ke #
fo |= | his ka ko ke ks ki ke # (41}
1 kin ki K kw ks kue  ksr ﬂ_ll.
L1 ko kaa Kes kes ke kKo ke R
e ku kn kn kn ku ke ke | [

Eq. {41) expresses the relationz of the
potential functions to their pormal deriva-
tions on the boundaries. Using the assump-
ticens of impermeable sea bottom and break-
waters, i.e., Eguations. (12) and (20}, ocne
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has an eguation for
exprassad as:

the boundaries 1 ~ 4,

gy bk ks ks ke N
oy kay  kes ke ke Er
[+ & kyn ku ks  ka '?_w (42}
oy ]In ka ka kau Et
By uase of Ega. (11}, (17}, (21}, and (38),

oen can rewrite Eg. (42) in the following

forms
s . -
(ko= cBRE®2 ) —Eku ki k, ikk o #.
ai
k, — k=] kuak ikkaa Py
1] g 1
ﬂl
ki —Ehu knk. =1 ikk, #,
ﬂ*
L — ku kaks ikka =T|| #.
L £ -
RLF—k*F )
[}
T (43)
o
o

Egquation {(43) can be solved for the pat-
ential function on the boundaries 2 ~ 4, and
the normal derivative of the velacity poten-
tial ﬁ} on boundary I} . The amplitude of
the ship motion at the center of gravity nan
then be calculated using Egs. (32) and (33).

2.5 Analysis for the case of open sea

As Shown in Fig. 2, one can divide the open
sea region into two sub-regions: one outer
se8 region with a constant water depth, I,
and the anocther one having arbitrary water
depth where the ship is present, II. For
the outer sea region, I, the analytical meth-
od ia similar to that given in section 2.1.
The region with arbitrary water depth, re-
gion 1I, was enclosed by four boundaries:
the imaginary boundary, I} . the still water
level, Iy , the immersed ship surface, Ty .
and the impermeable sea bottom, I,.

Following the procedures described in sec-
tion 2.4, a set of linear eguations can be
derived:

{ ku=cRE*Q ] %k.z kys ki S
ﬂ-]
kll o kl]_ t!'ki 'wl
: I
3
- i knk, =1 é,
4 E ] 1 S
R[F—kF j—|
0 (44)
0

where i is the normal velocity potential on
the imaginary boundary Ty, s the potential
function of the free surface, and ¢, the
immersed ship surface.

The amplitudes of the ship motiona can be
obtained by substituting the solution of
Eg. (44) into Egs. (33) and (34).

3 THE NUMERICAL RESULTS AND DISCUSSION

In all the cases presented here, the ship
was assumed to have the shape of a box for
simplicity. The length is taken to be 2b/h
= 4, the breadth is 2a/h = 0.8 and the
draught i 9h = 0.5. Figs. 3 and 4 show the
responses of the ship to regular waves on
open Sea. The regular waves have nondimen-
sional pericds o®*h/g 0.25 and 0.5 and
incoming angles ® = 0° ~ 90° with the x-
axis. The results of Ijima for the same con-
ditions were shown as dotted lines in Fig.
4 for comparison. As can be seen, axcept
for sway, {*, and roll, w* , which tend to
be smaller, these two metheds yield results
which are in satisfactory agreement.

For the case of ships sailing around har-
bour, the same scalea for the ship were
used. The problem is further simplified
by assuming the harbour is enclosed by in-
finity straight breakwaters. The entrance
width iz 4h (Fig. 5). Motions of the ship
are calculated using nondimensional wave
pericds o*hjg = 0.25 ~ 0.75 and the direc-
tions are w= 0" ~ 90°.

The imaginary boundary of the outer sea,
shown in Fig. 5., is set at ® = & 5h and y=
Bk. Under these circumstances, the effect
of ship-induced wave acattering on the
imaginary boundary, I} , should thus be ne-
gligible. This boundary is then divided
into: n = 2 vertically, and m = 52 horizont-




ally, yielding a total of 104 elements.

The free surface, Ty , is divided into
square elements, having a length of 0.5h
for each side. The sea floor is roughly
divided into 1%0 elements. The imaginary
boundary inside the harbour basin, T,
located at ® = & 4h and y = -4h, is divided
ints 20 elements, each breakwater has 11
elements. A8 for the immersed ship surface,
shown in Fig. 6, it was divided into 68
elements. The mass, m, and the inertial
moments about the x-, y-, z-axes, Ix, Iy,
Iz, were calculated using the following
equations:

m= 4pabgh

4 ¥, ! ng T
i .ahqh[l-f(zhi 3

4 h
A 1.3 q
R apu,ahth_1+{2a)=]

ta &

P labgh ( a'+b' Y

where w?®, w,®, and w? are coefficients of
the distribution of density of the ship,
they were all assumed to be 1.25 in this
paper.

When a ship in
along the y-axis
wave conditions,

its longitudinal direction
affected by the prescribed
calculated results are
presented in Fig. 7 through 15. With tha
ship's center of gravity located at (0,0),
the results are shown in Fige. 7 ~ 9. Figs.
10 ~ 12 are for the case (0.2h), and Figs.
13 ~ 15 for (D.4h}.

When waves propagate cbliguely into a
region where breakwaters are present, short
crested waves will be produced. The char-
acteristica of these depend heavily on the
incident angle and period. Ship motions in
this area should, therefore, differ from
those in the open sea. The location of the
ship is alao an important factor for the
behavior of the ship.

When center of gravity of the ship is
located at (0,0), with a dimensionleas
peried gh/g = 0.25, sway E¥ has its maximum
when the incident angle w is in the vicinity
of 45, tending te become smaller for decre-
asing wavelength. For the same wave period,
the heave, L% , on the other side, has its
minimum at w= 0°, increasing momotonously
for larger incident angles and smaller wave
lengths. Howewver, after the appearance of
the maximum, it has a tendency of decreas-
ing for increasing incident angles. The
minimum of the pitch w* occurs at w = 0°,
[zerc for open sea), tends to increase for
growing incident angles, and becomes larger
for shorter waves. The roll, ws* , is zero
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at w = 90°, has & maximum value when the
incident angle is arcund 45°. The surge,n* .

, attains its peak at w = 90°, decreasing
for shorter waves. And finally the yaw,
wy®  reaches its peak value at w= 45°, is
hardly affected by the changes of wavelength.
It behaves differently as for the case of
open sea, where it should be zero for a
zero angle of incidence.

When the center of gravity iz located at
{0,2h), the maxima of both sway, E* , and
heave, [* increase clearly. The appearance
of these maxima tends to occur at smaller
angles. As for the other modes of the motion,
there are no appreciable difference between
this case and the previous one.

For the case {(0,4h}, the maxima of sway,
E* , and heave, C#¥ , are larger than for
the case of (0,2h). The peaked values tend
to occur at even smaller incident angles
and for shorter waves. The pitch, w® , the
yaw, wy*, and the surge, n% , all have their
minimum values for incident angles w in the
range of 0° ~ 15°. Feor o*hfg = 0.75, they
are rero.

it can thus be concluded, that when the
incident angle is wvery small, i.e., when
wave rays are almost parallel to the break-
water, and when the ship is far away from
the breakwater, ship motions have a clear
resemblance to those in the open sea. When
the incident angle of waves is large enocugh
to produce short crested waves, the peosition
of its loops and nodes will depend on the
incident angles, as well as on wave periods.
In this paper, the assumption of infinite
straight breakwaters is used, with the re-
sults of ship motions that change periodi-
cally in accordance with its position. Since
areas which can produce short crested waves
are, in fact, finite, the critical posi-
tion(s) of the most severe wave-induced ship
motions for specified wave conditions can
be acquired through comparison.

4 CONCLUSION

A boundary element method is used to analyze
wave-induced ship motions, when the ship is
near a harbour entrance, or Structures.
S5ince the authors are unaware of relevant
reference(s) for confirmation, an alterna-
tive was chosen. Ship motions for the case
of open sea under the acticn of regular
waves were analyzed and compared results
from other authors. The agreements are
satisfactory. Experiemnts were carried out
for the case of ships sailing near harbour
entrance. However, due to limited size of
the plane tank, 24 x 30 m, stable short
crested waves, and/or atanding wave can not
be produced successfully. Further confirma-




tion rmust await for experiments to be carried 2..."-: I 1 I
out in our new plane tank in the near future.
—aw el
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Fig. 3 Motions of a bow-shaped ship in open sea
{o/g=0.25, kh=0.522)
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Fig. L Definition sketch
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Fig. 4 Motions of a bow-shaped ship in Open sea
Fig. 2 Definition sketch for open s58a [ o®n/g=0.5, kh=0,772)
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Ourter $ea imeQinary boundary
¥=8h

X=5h

x==dh L ) e x=dh

¥==dh
Imaginary boundary inside harbos
Fig. 5 Setups of the imsginary boundary
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2b/h=4,0
aqh=0.5 | = b

80

Fig. 9 Motions of & bow-shaped ship | o™h/g=0.75,
kh=0.990, center of gravity of the ship
located at =0, ¥,=0]
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Fig. 7 Motions of a box-shaped ship (g%nh/g=0.25,
kr=0.522, center of gravity of the ship
located at ¥p=0, ¥,=0)
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Fig. 8 Motions of a box-shaped ship (og%/g=0.5,
kr=0.772, center of gravity of che ship
located at X,=0, ¥,=0)
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Fig. 10 Motions of a box—shaped ship (oZ/g=0.25,
kh=0.522, center of gravity of the ship
lecated at X,=0, ¥,=2h)
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Fig. 11 Motions of a box-shaped ship (oh/g=0.5,

kihw0,772, center of gravity of the ship
lecated at X.=0, ¥,=2h)
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Fig, 12 Motlons of a box-shaped ship {o2n/g=0,.75,
k=0, 990, center of gravity of the ship

located at R.=0, ¥ =Ih)
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Fig. 13 Motions of a box—shaped ship {ofyg=0.25,
Xh=0.522, center of gravity of the ship
located at Xq=0, ¥,=4h}
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Fig. 14 Motions of a box-shaped ship {omsg=0.5,
kn=0.772, center of gravity of the ship
located at ®,=0, ¥,=4n)
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Fig. 15 Motions of a box-shaped ship {gohyg=0.75,
ki=0.890, center of gravity of the ship
located at ¥,=0, ¥,=dh)




