Boundary Element Methods
M. Tanaka and Z. Yao (Editors)
© 1996 Elsevier Science B.V. All rights reserved. 171

Deformation of solitary wave in coastal zones
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Keelung, China

In this study, generation,propagation and deformation of nonlinear waves were numerical
simulated by means of boundary element method . The algorithm was based on the Largrange
description and finite difference method to time to solve deformation problem of two dimen-
sional wave. In our numerical model, wave-making scheme was used, therefore any type of
desired wave could be generated, propagation of wave pass through underwater obstacle or
wave run up in coastal zone was obtained. In this paper, first, the credibility of the numerical
model was checked for the case that finite amplitude wave propagate and run up on a vertical
wall, we found that the results were good. Secondly, soliton was simulated, time history of
run up on a slope was shown, the case there has a submerge obstacle was also shown.

1.INTRODUCTION

Propagation and deformation of soliton in coastal zone was studied by previous scholars.
Liu [1](1984) studied diffraction of solitary wave passing through semi-infinite thin barri-
er in both theory and experiment, Mei[2](1985) obtained coefficient of energy dissipation,
reflection and transmission for soliton wave pass through a step by semi-experimental equa-
tion. Ouyama[3](1985) explored solitary wave set up on slope by boundary element method.
Seabra-Santos , Renouard & Temperville[4](1987) introduced long-wave equations including
curvature effects to describe the deformation and fission of a barotropic solitary wave passing
over a shelf or isolated obstacle. Chang & Tang[5](1992) employed the finite element method
with transient boundary fitted grid system to analyse solitary wave interacted by the submerged
steplike shelf. In this study, generation and propagation of nonlinear waves were numerical
simulated by means of boundary element method. The algorithm was based on Largrange
description and finite difference method to time to solve deformation problem of two dimen-
sional wave. In our numrical model, wave-making scheme was used, therefore any type of
desired wave could be generated, propagation of wave psss through underwater obstacle or
wave run up in coastal zone was obtained.
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2. THEORETICAL ANALYSIS

As shown in Fig. 1, Cartesian coordinates are employed, the origin of which is located

on water surface at rest with the z-axis vertically upwards. The fluid field is closed by a

pseudo wave making boundary I';, free water surface I'; and impermeable sea bed I';. We
assumed that pseudo wave making boundary I'; is sufficiently far away from coastal zone,
wave scattering induced by undersea topography or obstacle can be neglected. The fluid is
assumed to be inviscid, incompressible and flow is irrotational. Fluid motion has velocity
potential ®(z, z; t) which has to satisfy following Laplace equation
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Fig. 1 Defintion sketch

2.1 Boundary conditions
(1) Boundary condition on pseudo wave making boundary I';

Wave will be generated at pseudo-boundary I';, it means that I'; is a numerical wave-
making paddle, any desired type of paddle can be simulated, but in this study piston type is
used. Due to requirement of continuity between horizontal velocity of pseudo wave-making
paddle U(t) and fluid flow, we obtain following relation.

il P
F=" = U 0)

Any desired wave can be simulated by input suitable U(t), finite amplitude wave and solitary
wave are simulated in this paper. For finite amplitude wave, U(t) is expressed as

U(t) = —aosinot 3
sinhkh - coshkh + kh
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Where o (=27 /T), (o, k and T are angular wave frequency, wave amplitude, wave number
and wave period to be generated, respectively.

To simulate the solitary wave , U(t) can be expressed by
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Where z denotes the semistroke of wave making paddle and ¢ is the wave height of solitary
wave to be generated.

(2) Boundary condition on free water surface
Assumed that air pressure on free water surface is constant, the boundary condition on the
free water surface can be obtain from the kinematic and dynamic condition as

Dz 09
s &)
Dz 0%
= D Woide (10)
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where D is the Lagrange differentiation, g is the acceleration of gravity and ( is profile of
free water surface.

(3) Boundary condition on the impermeable sea bed |
Due to water particle velocity normal to impremeable seabed has to be null, we have
0d
ov
where v is outward normal on sea bed.

=0 12)

2.2 Integral equation

According to Green’s second identity law, velocity potential ®(z, z; ¢) at any point in the
region can be expressed by velocity potential and its normal derivative on the boundary as

(c, ;) /[‘9<I> SUHIPRE S )ilnl]d (13)

where r = [(¢é — 2)? + (n — 2)2]7.
When the inner point (x,z) approach to boundary point (¢',7'), due to its singularity,
velocity potential ®(¢,7;t) can be expressed as

0%(¢,n,t 6 1
o€, =1 [12% D01 a(g, 0,02 nLyas (14
where R = [(£ - ¢')* + (n =i 77’)2]7
To proceed with numerical calculation, the boundaries I'; through I'; are divided into NV}
to N3 discrete segments with linear elements, above equation can be written in a discretized
form as

(€', 7', 1) li/[@-(g DM + B;41(¢,n, )M 1n La
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where ®; = 89;/0v; B, = 09;41/0v , and M;,M, are the shape functions, M; —
(I-x) /2 M, = (1 + x)/2 ,x is a local dimensionless coordinate.
Eq.(15)can be expressed in matrix form as

[®] = [O] [@] (16)

where [®] and [®] are the potential function and its normal derivative on the boundaries, (0]

is a matrix relate to geometrical shape of boundary. The numerical scheme is discussed in
detail by Chou(1983) [6]

To proceed above equations Gauss integration formula were used. For the propose of
substituting boundary conditions into each boundaries, we rewrite Eq.(16) as follow

(@] =1[05][®;] , 4j=1~3 (17)
2.3 Simultaneous equations
2.3.1 Initial conditions

The initial boundary conditions on each boundaries are summarized as follows
(1).Pseudo wave making boundary T,

Requirement of continuity between horizontal velocity of pseudo wave-making paddle U(t)
and fluid motion, we obtain

g 0

Sy —ph e ) (18)

(2).Free water surface I’y

Assume the water surface is at rest at t=0, and the velocity potential is null ,i.e.
=0 (19)
(3).Impermeable sea bed T'5

There is no flow exist on the direction normal to sea bed, give

—0 8<I>°
n= v

where the superscript "0" indicates the time begin to simulation.

(20)

2.3.2 Finite Difference of related terms

The tangential derivative (9®,/8s); on free water surface can be approximated as
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On the free surface, we have

% = 0—¢2—sinﬂ— @cosﬂ
0z  Ov Os
(22)
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where 3 denotes the angle which free water surface make with x-axis.

At k-th time step, the profile of free water surface is expressed by (z*, z*), from Eq.9 and
Eq.10 we can evaluate that expressed by (z¥*!, z¥+1) at k+1-th time step as

LY

k+1 _ _k 2

o =g% +( 5 )At (23)
0%

k+1 _ k 2

2 =27 4 ( 5 )AL (24)

where At denotes time difference interval.
From Eq.11 and Eq.22,velocity potential on free surface ®**! at k+1-th time step can be
approximately evaluted by

1,00, 09,

¢k+1 — Hk _[Z=4\2 i AVA] o k+1 25
B = o 4 Sl (SRR AL - gt A (25)
Substituting Eq.2, Eq.12 and the above equation into Eq.17, we can obtain following
simultaneous equations.
?, ' I =0, 0717'[On 0 03][3 1
®, =10 -0 0 O =1 Op @, (26)
03 0 -0xn I O 0 On @3

2.3.3 Time iteration process

1. At the beginning time of simulation, substituting Eq.18 to Eq.20 into Eq.17, normal
derivative of velocity potentials on water surface d®3/0dv, velocity potentials on pseudo
wave making paddle ®? and velocity potentials on sea bed ® can be obtained.

2. From Eq.21 tangential derivative of velocity potentials on water surface 099/ ag are
given.
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3. Profile of water surface (z',z') for next time step can be obtained from Eq.23 and
Eq.24.

4. The velocity potentials on free water surface for next time step will be given by Eq.25.

5. At t=At time step, matrix [O] in Eq.17 will be carried out again under new profile of
water surface obtained by procedure 3 and new position of pseudo wave-making paddle.

6. Substituting velocity potentials on new water surface given by procedure 4, horzintal
velocity U(t) of pseudo wave-making paddle given by Eq.2 and boundary condition on
sea bed given by Eq.12 into Eq.26, the normal derivative of velocity potentials )} /9y
on water surface, velocity potentials ®} on pseudo wave-making paddle and velocity
potentials ®} on sea bed for t=At time step can be obtained.

7. Repeating above procedure 2 to 6,the time history of generation,propagation and defor-
mation of wave can be simulated.

3. NUMERICAL COMPUTATIONS AND DISCUSSIONS

3.1 Finite amplitude wave

For the propose to confirm the credibility of this numerical model, finite amplitude wave
is simulated with incident wave amplitude (o = 0.05h and dimensionless angular frequencies
0?h/g=0.25, 0.5, 1.0, 1.25. The pseudo wave making paddle is placed at a distance of 5
times wave length from the origin of coordinates. For the case of vertical wall there are 32
linear elements for each wave length, i.e. As = L/32 and time discrete interval At = T'/160
are taken, but for cases of inclined slope As = L/40 and At = T'/400 are used. Fig.2, Fig.3
and Fig.4 show the time history of sinuous wave generated, propaged and run up a vertical
wall and a inclined slope with slopes 1:0 to 1:1. Fig.5 shows the profiles of a progressing wave
without the effects reflection induced by the vertical wall, it is compared to the 3rd order Stokes
wave derived by Skjelbreia(1959)[7], good agreement is found. Fig.6 shows the time history
of wave profile at the time incident wave is reflected by the wall, i.e. clapotis is formed, it
is compared to the theoretical results given by Tadjbaksh(1960)[8], good agreement is found
also. From Fig.4 we cah find the characteristic of finite amplitude wave become stronger
when steepness of profile of incident wave become larger.

3.2 Solitary wave

Fig.7 shows soliton run up-down a vertical wall with incident wave height (o/h = 0.05.
Fig.8 shows the profile of soliton at the time that the reflecting effect induced by the wall is not
appeared yet, compares it to theoritical results given by Boussinesq(1872)[9], good agreement
is also found. Fig.9 shows the time history of water surface profile which a submerge bank is

fixed in front of the vertical wall, the layout is shown in figure. Fig.10 show that of a incline
wall.
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The pseudo wave making paddle is placed at a distance L, 7 from the origin of coordinates.
Leyy is a effective wave length of soliton given as (Tsukasa(1983)[10])

Lejs = 9.5766h\/§ @7)
0

There are 40 linear elements on water surface,discrete time interval At = tc/250 is taken.
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4.CONCLUSIONS

Algorithm in this article using boundary element technique based on Largrange description
and finite difference method to time is applied to analyse two dimensional nonlinear sinuous
wave and solitary wave problem as a wave making problem. When soliton is simulated, we
found that the stability of this scheme is good for the slope of wall less then 1:5. On the
other hand, for sinuous wave , the slope of wall greater than 1:1 numerical unstability will be
occured.
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