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The influence of large cylinders on a wave-current field with constant water depth is studied
in this paper. This paper considers the Doppler’s effect between wave and current on water
surface. It is assumed that current and wave amplitude are small, and provides a numerical
model by three-dimensional boundary element method to solve coupling problems among
wave, current and large cylinders.

1. INTRODUCTION

The problem of wave-current interaction has been studied in various aspects. Grue and
Palm (1985)! solved the two-dimensional wave radiation and diffraction problems due to a
submerged cylinder with a uniform current in deep water. Matsui et al. (1991) studied
the hydrodynamic forces on a vertical cylinder in uniform current and regular wave field.
Isaacson and Cheung (1993)P! used a time-domain method to study the effects of a current on
the radiation of regular waves around a two-dimensional body. Chou and Yan (1995) used
the boundary element method to study the coupling problems in wave-current field with the
presence of a large cylinder in constant water depth. Newman (1978)1%] applied the Doppler’s
effect to describe a variety of apparent wave frequencies induced by currents to analyse the
motion of ship. In this paper, current velocity around cylinders can be obtained by means
of the boundary element method, the apparent wave frequency can be also obtained with
Doppler’s effect. Successively, the coupling problems among wave, current and cylinders
can be solved by three-dimensional boundary element method.

2. THEORETICAL ANALYSIS

Figure 1 schematically shows wave-current field in the presence of large cylinders. The
radius of cylinder is a, and water depth is A. A Cartesian coordinate system is employed, the
water surface at rest is located at o-zy with z-axis vertically upwards. As shown in figure 1,
the flow field is divided into two regions by a pseudo-boundary I';. Region I is an outer region
bounded by I'; and infinite-field boundary T',, Region II is a region bounded by I';, surfaces
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of cylinders, free water surface and impermeable seabed. The presence of cylinders affects
waves in both regions. However, if the pseudo-boundary T'; is sufficiently far from cylinders
(> L/2), the wave scattering and current disturbance induced by them can be neglected in
Region I.
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Fig. 1 Definition sketch of cylinders in wave-current field

It is assumed that the fluid inviscid, incompressible, and flow is irrotational. Therefore,
there exists a velocity potential that satisfies the Laplace equation in both regions. We consider
a steady current U, and small amplitude waves having angular frequency o, (= 27 /T, T is
wave period) and amplitude (,, incident from infinite-field at angles of 3, and w,, respectively,
against z-axis. If current velocity U, and wave amplitude (, are assumed to be small, the
potential ¢ of wave-current field can be expressed as a couple of current potential $¢ and
wave potential " which including the effects of current®ls) as

O(z,y,2;t) = ©°(z,y) + ®¥(x,y, 2; ) 1)
where @, ®°, ®" have to satisfy Laplace equation.

2.1. Velocity potential of current in Region I

The velocity potential of current ¢ in Region I can be expressed as a sum of a steady ve-
locity potential ¢° and a disturbance velocity potential * induced by the presence of cylinders
as

@l 2 ¥ L Lo 2
where ¢° = —U,(z cos f, + ysinf,), and ¢* should be zero on far field which includes the
effects of cylinders and satisfy the following Laplace equation.

6290* 6280*

Ox? * d*yz‘ =0 ®

Applying the Green’s theorem, potential ©*(z,y) for dny point in Region I can be éalcu-
lated by following integral equation,

1 0e* (¢, 1 . Ok s 4
cp*(z,y) = 5/1“ [# In-—¢ ({,U)E(ln 1—) ds 4)

r
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where ¢*(¢,7)/ and d¢*(¢,1)/dv(= ") are velocity potential and its normal derivative with
v the local normal coordinate to boundary taken outwards, and r = \/(7 — &2+ (y—n)?i
distance between a point under consideration and boundary. The factor c is equal to unity
within boundary, but will be 1/2 on smooth boundaries.

" In the numerical analysis, the boundary Ty, where ¢ = 1/2, is discretized into /V; segments
with constant line element. Eq. (4) is rewritten in a matrix form as

{¢*} = (¢} {¥"} ®

where {k*} is a coefficient matrix related to the geometric shape of I';. The numerical scheme
is discussed in detail by Chou (1983)!¢.

2.2. Velocity potential of current in Region II

The velocity potential »® is affected by cylinders in this region, and satisfies Laplace
equation. Applying the Green’s theorem, velocity potential ¢ can be calculated from the
following integral equation.

J 1 A (&, . 0 1
coen) =5 [ |2 ind - e n | as ©
As before, Eq. (6) can be expressed as form of Eq. (5)

{¢?} = {k} {2} ™

The numerical scheme is discussed in detail by Chou (1983)[¢l.

The flow is null in normal direction to the surfaces of cylinders, free water surface and
impermeable seabed. Requirement of mass and energy flux continuity between Region I and
Region II at the pseudo-boundary I’y leads to the following relation.

7 =p? ®)
oM = L@ )

To facilitate substitution of the boundary conditions, we rewrite the governing equation, Eq.
(7) into the following form.

(¢} = R} {2} (i=12) (10)
Substituting the boundary conditions into Eq.(10) and a little algebra leads to
@} = (b = k) {o" - 2} (11)

Substituting Eq. (11) into Eq. (10), velocity potential ©{? and ¢5” on boundaries T'; and T',
can be obtained.

IS



184

2.3. Distributions of current velocity within Region II
Once the velocity potential ¢ and its normal derivative 3@ of current are obtained, the
current velocity at any inner point in region II can be derived as

g = —vz; 2z —2zj)[(x —z;)ve + (y — y;)v
o % Z {@z)(x ﬂﬂ?g) i (P;z) [_’; + (z 173)[( ;4) (y y:) y]] } ds; (12)
qe=1

1 Mgls {_m Y=Y\ _ o [—Vy 2y = yi)l(= — zj)ve + (y — y5)1,]

v=— @ (=) - | 52 + - ds; (13)
2r o 2 r2 T r r

where v, and v, are the components of normal vector v in directions of z and y on boundary.

2.4. Wave velocity potential
It is assumed that current velocity and wave amplitude are small. Therefore, wave velocity
potential ®*(z,y, z; t) which including the current effects can be expressed as follows!!

9Co

Oo

oY (z,y,2;t) = #(z,y,2) e~ (14)
where g is acceleration of gravity, (, is incident wave height, 7 is imaginary unit, ¢ is time,

and wave number £, satisfies the following dispersion relation.

a2h

°~ = k,htanhk,h (15)
g

The apparent frequency o is angular frequency of wave affected by current, its means that
Doppler’s effect is considered by following relation

c=00t k- U (16)

where | & | =k, | U |(= Vu? +v?) is the current velocity around cylinders. The potential
function ¢ satisfies following Laplace equation.

o’¢ 0% 0%
922 #* 67‘/2 + 7% 0 17)

2.4.1. Wave potential function in Region I
If the pseudo-boundary T'; is sufficiently far away from cylinders, wave scattering induced

by cylinders can be neglected in this region. The potential function ¢ (z,y, z) for Region I
can be expressed as

coshk,(z + h)

cosh k,h (18)
where [°(z,y) is incident wave potential function, and f*(z,y) is diffracted wave potential
function induced by the presence of cylinders. i

Substituting Eq. (18) into Eq. (17), we obtain pofential function f*, which satisfies
following Helmholtz equation.
82f:« aZf* -l
gz T yr TR/ =0 (19)

¢(l)($’y,2) e [fo(mw y) # f*(m’y)]
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On the far-field boundary, Sommerfeld radiation condition must be satisfied, and f*(z,y)
should be zero. Applying the Green’s theorem, potential function f* for any point in Region
[ can be calculated from the following integral equation

o Fa) =5 [ T € - FengE e} as @0

where [*(¢,n) is potential function specified by geometric shape of boundaries, f (¢,7)(=
af*(&,m)/0v) is its normal derivative with » the local normal coordinate to boundary taken
outwards, H(" is zeroth order Hankel function of first kind. Accordingly stated in Section
2.1, Eq. (20) can be rewritten in a matrix form as

(7} = {K*}{F"} 1)

where { *} is a coefficient matrix related to the geometric shape of I';. The numerical scheme
is discussed in detail by Chou (1983, 1993)6I(7

2.4.2. Wave potential function in Region II

Region II is bounded by pseudo-boundary surface .S;, free water surface .S;, surfaces of
cylinders S3 and seabed S4 (let S = S; + 52 + S3 + S4). According to Green’s second
identity law, potential function ¢ (x,y, z) at any point within Region II can be determined
by following integral equation

1 2 Sy 1
¢80 2) = g [ [Fem g - en oS 1] an )

where R = \/(.1: = &)+ (y — 1)+ (2 — )%. As before, c is unity for point inside the region
and is equal to 1/2 on boundaries.

To proceed with numerical calculation, surfaces of boundaries S; through S, are divided
into Ny through NV, discrete segments with constant plane elements. For the case that ¢ = 1/2,
Eq. (22) is readily expressed as

{$@} = {K} {7} (23)
As before, the numerical scheme is discussed in detail by Chou (1983, 1993)(6l(7],
2.4.3. Boundary conditions

(1) Boundary condition on free water surface

The free surface condition of coupling wave-current field is given by linear wave theory!”
as follows,

e 09
517 + gg =0 (24)

substituting Eq. (1) and Eq. (14) into Eq. (24), which can be rewritten in the following form
as ¥

a (2) 2
- F97 =0 25)

=0,

™

where 0 = 0,4+ E . (7



186

(2) Boundary conditions on surfaces of cylinders and impermeable seabed
The flow is null in normal direction to surfaces of cylinders impermeable seabed, i.e.,

D o (26)

(3) Boundary condition on pseudo-boundary
Requirement of mass and energy flux continuity between region I and region II at pseudo-
boundary surface 5 leads to the following relation.

a(l) = 3(2) (27)
PN = @ (28)

2.4.4. Equation system
To facilitate substitution of the boundary conditions into Eq. (23), we rewrite it into the
following form,

{6} =1 {&7}  Gi=1~4) @9

By dividing the surface of pseudo-boundary S; into M segmients vertically and N segments
horizontally, applies boundary conditions of Eqs. (27) and (28) to obtain the relation between
potential function and its normal derivative on pseudo-boundary S; as follow.

{91} = (R} {F° = K"F°} + C{R} (K"} {Q} {$,} (30)

where C' = k,/N, sinh k,h, (N, = 1/2 + k,h/sinh 2k,k), and the coefficient matrixes {R}
and {Q} are diccussed in detail by Choul6Il"].
Substitution of Eqgs. (25), (26) and (30) into Eq. (29) and a little algebra lead to

2
1(11 S CRI{*Q %I\'lz 0 5(12) R[FO _ 1‘,*70]
Ko ‘771(22 ~f @ 9.3 0 (31)
¢(2) 0
K5, %1(32 2] 3

By solving above equation, the derivative of potential functions on boundary S; and potential
functions on boundaries .S, and S5 are obtained.

2.5. Wave forces and wave height distributions
The pressure throughout fluid can be evaluated by Bernoulli’s equation, current velocity
is assumed to be small and its squared term |V®¢|? can be neglected. We obtain the dynamic
pressure (without static pressure) of first order as
oov

=ep | — 2. Y. w
P p [ T +Vo°.Vo ]
where p is fluid density.

Substituting Eq. (14) into Eq. (32), taking integration around the surface of each cylinder
yields total forces as

(32)

P o P9 ot
o

/S [—i0¢® + Vi@ . V@] 1 dA 33)
3
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From Eq. (33), the profile of water surface can be expressed as

g 4 ag’t +Vo° . Vor (34)
g

Substituting Eq. (14) into equation (34), the wave height ratio, K, in Region II, can be
calculated by

K= i|ia¢ — V@ . V¢ 35)
Oo

3. NUMERICAL RESULTS

The case of two cylinders within wave-current field is studied in this paper. The radius of
cylinder a is 0.25h, and distance D, between two cylinders is 0.25k. The current velocity is
represented by a Froude number F, (= U,/+/gh) which is 0.1. To facilitate the computations,
the wave is propagating on opposite direction of z-axis, and wavenumber k,% is varied from
0.1to 1.6, and 0, (= B, — w,) 0°, 45°, 90°, 135° and 180° are taken.

In numerical analysis, the boundary surfaces were divided into 1412 discrete areas with
constant element (N = 320, N, = 540, N3 = 240, N4 = 312, and M = 4). The wave
forces on those cylinders and distribution of wave heights for k,h = 1.0 are presented.

3.1. Wave forces

As shown in Figure 2, the z-component wave forces is reduced with 6, is increased in the
lower wave numbers (k.2 < 1.2). For the cases of § = 0° and 45°, wave forces on each
cylinder is greater than that in the absence of current, but for the cases of § = 135° and 180°,

it is less than that in the absence of current. Figure 3 shows the wave forces of y-component
on each cylinder which is less than that of z-cmoponent.

0.6 0.6
LU, = 00 a/h=0.25 — F = 00 0/h=0.25
e 6, = 0 (F,=0.1) 0./h=0.25 e 8, = 0 (F,=0.1) 0,/h=0.25
oo §, = 45° cylinder No. 1 e 8,= 45 cylinder No. 2
054 .. g, = 90° 054 6. = 90°
] e+ 8, =135° | s 9, =135°
———— §, =180° ——— §, =180°
o 0.4 o 0.4
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o (o2}
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(a)Wave forces of cylinder No.1 (b)Wave forces of cylinder No.2

Fig. 2 Wave forces of z-component
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Fig. 3 Wave forces of y-component

3.2. Wave height distributions

Figures 4 is the distribution of wave heights in Region II for incident waves with kA = 1.0,
and F, = 0.1. As shown in figure, wave heights in the front of cylinders is greater than that
behind cylinders induced by the sheltering effect. When current and wave are propagating
in the same or opposite direction (i.e., §, = 0° or 180°), the distribution of wave heights
are symmetrical to z-direction. For the cases of 0, = 45°, 90° and 135°, the distribution of

wave heights become unsymmetrical is due to the influce of Doppler’s effect which we have
considered in our numerical model.

4. CONCLUSIONS

This paper considers the variety of wave frequency at any point on free water surface. In
other words, the Doppler’s effect is applied to this paper, and boundary element method is

used to treat the coupling problem among wave, current and cylinders. This model can be
developed to analyse the irregular waves.
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