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ABSTRACT A numerical scheme is developed in this study to simulate irregular waves. To generate
waves, the power spectrum defined by significant wave height and significant wave period is employed as
the condition of incident waves. The power spectrum of Brestschneider-Mitsuyasu type is chosen in this
study. Based on the Lagrangian description and finite difference of time derivative, the generation and
propagation of irregular waves are simulated numerically by means of boundary element method. The
numerical model is verified by studying the case of irregular waves propagating the water tank with constant
depth. The time histories of water elevation of measured points on free water surface are presented in this
paper, Besides, the time histories of water profiles at different time steps are shown as well.

INTRODUCTION

Since the improved prediction technique of the extreme wave load can give a more reliable data for design of
the offshore structures, the development of two-dimension numerical tank have been studied by many
researchers.

Based on the linearized governing equations, Madsen (1970) simulated the periodical waves generated by
piston-type wave-maker. Some numerical solutions of a variable-coefficient Korteweg-de Vries equation are
derived by Johnson (1972) to describe the solitary wave moving onto a shelf. Faltinsen (1978) studied the
sloshing in & water tank by means of the boundary integral method, Using the nonlinear initial boundary
condition and velocity potential, Nakayama(1983) applied a boundary element technique to the analysis of
nonlinear water wave problem. Based on the boundary integral equation, Brorsen and Larsen (1987)
presented a new approach to the generation of wave for nonlinear regular waves. Using boundary element
method, the generations, propagation, and deformations of solitary waves in the water tank are studied by
Okamura and Yakuma (1987), Sugino and Tosaka (1990). With the Green's theorem, a time-domain
second-order method for simulation of nonlinear wave propagation in a flume was developed by Isaacson
(1994). Based on the Lagrangian description with time derivative, Chou and Shih (1996.a) analyzed the
generation and deformation of solitary wave by means of boundary element method.

However, natural waves are known to be irregular. For the development of numerical simulation of nonlinear
irregular waves, using Green-Maghdi theory, the nonlinear irregular wave simulation in a three-dimensional
numerical water tank was reported by Xu and Pawlowski (1993). Boo and Kim (1994) presented the
simulation of nonlinear irregular waves using a higher order boundary element method. Again, Boo and Kim
(1997) employed the Stokes second-order nonlinear irregular waves as incident waves to analyze the
problem of nonlinear diffraction acting on a floating structure,

In this study, wave spectrum defined by significant wave height H,; and significant wave period T, is
employed as the condition of incident irregular wave. Using the boundary element method with linear
element, the propagation of irregular wave is simulated. From the numerical results, the time histories of free
water elevations of measured points on free water surface are presented. The time histories of water profiles
at different time steps are also shown as well,
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NUMERICAL SIMULATION

The procedures of the numerical scheme in this paper are divided into three parts. The first is the setting
of the initial condition for generating irregular wave; secondly, the irregular wave is simulated by means of
the boundary element method; finally, the numerical results are compared with incident wave to assess this
scheme.

1. The setting of the initial condition for generating irregular wave
Using the significant wave height H,,and significant wave period T,, the initial conditions for

generating irregular wave can be given by efmploying three power spectrum defined below or arbitrary
power spectrum. This three power spectrum can be expressed as
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While the power spectrum of Brestschneider-Mitsuyasu type is chosen,
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where the T, is peak period, f, is peak frequency, » is peak enhancement factor which the value is given

3.3 in this paper. Since the piston or flap type of wave-maker can be simulated in this numerical scheme, the
power spectrum should be modified as

$(1)=alf)s, (1) )

where alf) is the modified coefficient of wave-maker. For the piston type,
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. and for the flap type,
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where k is the wave number and A is depth of water tank. Ignoring the waves which period are too long or
short, the wave period are limited as

S N (7)

Tax = 25 seconds and Ty, = 5 seconds are given in this study,
According to the power spectrum, the water elevation £ () can be obtained by

()= f J24f3(f, ) coslo ot - &) (8)
=1

where o, =2nf,, &, denotes the random number between 0 and 27 . The horizontal velocity of water
particle at arbitrary depth, U/(r), can be expressed as

Ule)= Z B o, cosh k(z +h}cus{ fag) ©

ot cosh kh

2. Simulation of wave generation

Z

i Free water surface
— |€0,0) ¢ B ALLO)
— T L] M E] o
£ N2 =
=7 =
2N Nl 49
= B
=
57 N4 Zis
T T T T T Tl rrrr e

Impermeable sea bed

Fig.1 Defimition of water tank
As shown in Fig. 1, the original coordinate is located on the still water surface with x-axis positively right
and z-axis positively upwards. The flow field is bounded by a pseudo wave-maker boundary T, a free water
surface T,, impermeable vertical wall and seabed, I',, I, respectively. For inviscid-and incompressible flow,

the flow motion has velocity potential @(x,z;¢) satisfying the Laplace equation as follows if it is
irrotational.

=2 =2
25 I (10)
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Assuming that the atmospheric pressure on free water surface is equal to zero. the following
relationships can be obtained from the kinematic and dynamic conditions.

f
I
1 1
_D;‘Hg,,_l[[ﬂ] +[@.] }:n (13)
Dt 2|\ &z

where D is the Lagrangian differentiation, g is the gravitational acceleration and 5 is the water surface
elevation.

Since the boundaries of vertical and seabed are assumed to be impermeable, the fluid velocity normal to
the boundaries are equal to zero, we thus have
O il (14)
it

where n denotes the direction normal to boundary.

For continuity, the horizontal velocity of wave-making paddle, [/(r), and the fluid velocity have the
following relationship:

E:%:-U(;} (15)

According to Green's Second Identity, the velocity potential at any point within the computing domain,
®(x,z;1), can be obtained by the velocity potential on the boundary,®(£,m;¢), and its normal
derivative, &@{i.q;i‘]fﬂn . The relationship is

o)~ o[ [ 2200l o r0 Ll 6

where r = [{; -x)f -(7-z) }5 . When the inner point (x,z) is very close to the boundary point (£',7'), the
velocity potential of that point, ®(£',57';1), can be expressed as

&) = j{“‘”{;f") - (7, )—-lnﬂrﬁ (17

'y | 1
where R =k§—§‘ f+(11—r;' }}A' ;
In order to proceed the numerical calculation, referring Fig.1, the boundaries I, through I, are divided

into N1 to N4 discrete linear elements respectively. With the introduction of local dimensionless coordinate,
the integral equation can be expressed in matrix form:

[v]=lo,]®] ij=1-4 (18)
where [®] and [E] denote the velocity potential on boundaries and its derivative, and [0] is the related

shape function.
Substituting initial boundary conditions into Eq.18, the velocity potential on pseudo wave-maker
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boundary, @, the normal derivative of velocity potential on free water surface, 5‘ and the velocity
potential on fixed impermeable boundaries, @7, @7, can be obtained. Differentiating the time derivative in
Eq 11, Eq.12 and Eq.13 by using forward-difference, we can obtain the new positions of free water surface,
1 24 and velocity potential on free water surface, ®5*! at next time, £ = (k+1)Ar.

2 2
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- Gk

Repeating to use the boundary conditions and velocity potential on free water surface at next time to resolve
Eq.18, the other unknown values, o ,EH i @: can be obtained. It can be expressed as a matrix form:

-0, i
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where “I" is the unit matrix. The procedures of numerical calculation are discussed in detail by Chou & Shih
(1996.b)

3. Analyze the irregular waves

According to the water surface profiles obtained by using boundary element method, the mean elevation,
significant wave height and significant wave period of irregular waves can be obtained by means of zero-up
method. To verify the accuracy of this numerical model, we then use Fast Fourrior Transfer (FFT) to get the
power spectrum and compare with that of incident wave.

NUMERICAL RESULTS

In this study , the depth and length of numerical water tank are h = 100m, {/ = 50k _ The power spectrum
of Brestschneider-Mitsuyasu type is chosen and significant wave height H . =2.5m significant wave

period T} 5 = 8seconds. Dividing the power spectrum into N =512, the sampling time 4T =0.5, and the

frequency df = 1/NdT =1/256, this power spectrum is shown in Fig.2. The modified power spectrum for

pseudo wave-maker of piston type is shown in Fig.3. The time histories of free water surface elevation are
shown in Fig 4.
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Fig.2 Power spectrum Fig.3 Corrected power spectrum
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Fig.4 Time histories of free water surface elevation for incident wave

While simulate the generation of irregular waves, the element numbers on different boundaries are N1=5,
N2=101, N3=6, N4=51, and the interval time of wave making Ar =0.05 seconds

Three measured points on free water surface are used to record the water surface elevation in this study.
These points locate at the third, 10th, 20th node measured from pseudo wave-maker boundary and marked as

A_ B and C respectively. The time histories of free water surface elevation on different measured points are
shown in Fig5.
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Fig.5 Time histories of water surface elevation on different points
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Fig 6 indicates the water profiles at different time steps: ¢ =800As,f = 1200411 = 16004s, ¢ = 2000At, and
1 = 2400A4
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Fig.6 Water surface profiles at different time steps

CONCLUSION

This study is the case of simulation of two-dimensional numerical water tank for irregular wave by
means of the boundary element method. To analyze the waves will be presented in future. There are two
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difficulty to develop the numerical water tank for simulating irregular wave. First, getting the stable
numerical data is a point in issue. Additionally, it needs sufficient developing time and length to develop the
irregular waves. That means the computing time will be longer and capacity of calculation will be larger. So,
it is necessary to develop dissipation water tank in simulation of irregular.
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