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Abstract

To assess the generation, propagation, deformation and breaking
of the solitary wave on a mild slope, a numerical simulation of the
wave making problem by a boundary element method is developed in
thus paper. The numencal scheme involved is based on Lagrangian
description together with a finite difference approximation of the time
derivatives. The simulation of this study concerns of solitary wave
propagating from constant depth and over a mild slope. The time
history of the solitary wave propagation is shown and the numerical
results of mass, potential energy and kinetic energy of the fuid are
presented to confirm its accuracy,
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1. Introduction

When water waves reach coastal regions, it is observed that an
mcrease in wave height and a decrease in wavelength occurs due to
the reduction of water depth. This phenomenon makes wave steeper
towards the shore and leads to wave instability and breaking, For the
sediment transport by coastal current, shaping of beaches, and design
of coastal structures used for beach protection, knowledge of the crest
beight or location of breaking wave 15 important in coastal
ENgINEering.

Numerical studies of solitary wave in shallow water have been
developed by many researchers. The first discussion in detail for the
propagation of solitary wave on a slope was made by Madsen and
Mei (1969). Based on a set of approximate equations for long wave,
the numerical results in that study were compared with experimental
date and a reasonable agreement was obtained. To describe the
development of solitary wave moving onto a shell, numerical
solutions of a vanable-coefficient Korteweg-de Vries equation was
denved by Johnson (1972). MNakayama (1983) discussed the
transformation of solitary wave and the running up against a vertical
wall by means of a boundary element method. Using the nonlinear

initial boundary condition and the velocity potential, the numerncal
wave generator was studied by Grilli and Subramanya ( 1989). By the
boundary element method with the mixed Eulerian-Lagrangian
description, Sugino and Tosaka (1990) analvzed the generation,
propagation and deformation of a solitary wave in water tank with a
gentle slope. Chou and Shih(1996) studied the propagation and
deformation of solitary wave with submerged obstacles by using the
boundary element method together with time denvative

In this paper, the numerical results for the generation.
propagation, and breaking of solitary wave on a mild slope are
studied by boundary element method. The numencal scheme in this
paper 15 based on the Lagrangian description together with the time
derivative. To simulate the generation of solitary wave, the pseudo
wave generator of piston type 15 chosen.
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Fig. 1 Sketch of the water tank

1. Theoretical analysis

As shown in Fig. 1, the onginal coordinate system 1s located on
the still water surface with x-axis pointed positively to pseudo wave
generator and z-axis pointed positively upwards., The flow field is
bounded by a numerical wave generator boundary T, a free water

surface I'; , a slope I'; and horizontal impermeable seabed T, . For
an inviscid and incompressible flow, the flow motion has a velocity
potential @(x,z¢) satisfying the Laplace equation if it is irrotational.
The expression can be written as
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2.1 Boundary conditions
2.1.1 Wave generator boundary [ :

In this paper, the wave generator is assumed to be a piston type.
For continuity, the harizontal velocity of wave-making paddle, /(1) ,
and the fluid velocity have the following relationship:
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where M denotes the normal unil vector. For simulating solitary
wave, the UiL) can be expressed as
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where x, 15 the semistroke of the wave-making paddle and £, 15
the wave height of solitary wave simulated.

,3&11 Free water surface [,

Assuming that the atmospheric pressure on free water surface is
] o zero, the following relationships can be obtained from the
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where [} is the Lagrangian differentiation, g is the gravitational
acceleration and # is the water surface clevation.

2.1.3 Impermeable seabed 17,1

Since the boundaries of seabed are assumed to be impermeable,
the fluid velocity normal to the boundary has to be null, thus we have
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2.2 Integral Equation

According o Green's  Secomd  Identity, the wvelocity

potential, @ix.z.¢) at any point within the domain of computation can
be obtained by the velocity potential on the boundary, @£ () . and
its normal derivative, 3£ a7,1)/@n , that is
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where T denctes the boundary of computational region and
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When the inner point {x,z) is very close to the boundary
point, (£}, the velocity potential of that point, ®(£.5'.1), can be
expressed as
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To discretize the integral equation, the boundarics are divided

into several linear eclements with the introduction of local
dimensionless coordinate, and Eq. (9) can be expressed as
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where M, A4, denote shape functions,  is the local dimension]ess
coordinate. Let
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and substitute Eq. (12) into Eq. (10}, Eq. (107 can be expressed as a
matrix foorm:
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where [ED] 18 the potential function, [@] is the normal derivative of
potential function on the boundary, [?] is a matrix of the related
shape function.

For substituting the boundaries conditions inte Eq13)
conveniently, we rewrite the matrix in Eq, (13) again as follow:

[2,]- k?.y F.-]

where i) denote different boundaries, I',.[,.[hand I, The

numerical scheme has been discussed in detail by Chou(19%3), Chou
and Shih{ 1996

Ly=1-4 (22}

2.3 Compatible equations
2.3.1 Initial conditions on boundaries

At the beginning of wave pemeration, i.e. t=0, the boundary
conditions are expressed as Tollows:

(1) Mumerical wave generator boundary T :
Based on the fact that the fluid velocity is the same as the

horizontal velocity of the wave paddle, we can express the relationship
a5
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where the subscript “0" denotes the time of (=0,
(2) Free water surface [

Assuming that the free water surface is still at t=0, the velocity
potential on boundary is therefore

@) =0 (25)
(3) Impermeable seabed T and T,:

Because the seabed is assumed impermeable, the velocity normal
to the boundary 15 always null at any time:
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where k denotes level of time.
2.3.2 The finite difference approximation

At any time (t=k At), based on the weighted central difference,

the tangential derivative of velocity patential on the free water surface
can be obtained:
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Differentiating the time derivative in Eq. (4) and Eq. (5) by
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otward-difference, we can obtain the new positions of elements on
free water surface at next time
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and get the new velocity potential on free water surface at next tune

from Eq.(6):
i
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Substituting Eq. (2), Eq. (7), and above equation into Eq. (22).
we can obtain the following simultanecus equations:
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2.3.3 Computational procedure

The iterative computational procedure is staled below:
At ¢ =k, Eq. (24) to Eq, (26) are used to obtain the normal
derivative of velocity potential on numerical wave generator

boundary, Ef. on impermeable seabed, E’;Ei and the

(1}

velocity potential on free water surface, ®% respectively
Substituting those values into Eg. (22), we can oblain the
velocity potential on numerical wave generator boundary, -:I:lf :

on impermeable scabed, ¢*§ ,mf‘, , and the normal derivation of

velocily potential on free water surface, E; ;

From Eq.{27), we can get the tangential derivative of velocity
potential on free water surface, 0% /35 .

The x-directional or z-directional derivatives of velocily

potential on the free water surface can be obtained by using the
following relationships.
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where # denotes the angle between the tangential direction of
free water surface and the x-axis.
From Eg. (28) or Eg. (29), the new position, x*'' 2%
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velocity potential cn free water surface, @

can be obtained respectively.
Using the new profile of the free water surface and new position
of numerical wave-paddle, new 'jin Eq. (22) can be

obtained by recalculating it.

o —k+l =, =]
Substituting @1 .0 @37 5" into Eq. (30), we can
obtain the new normal derivative of velocity potential on free

(5)
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water surface, @z , the velocity potential on numerical wave



generator and impermeable boundaries, ®F*! @4 di

{7} By repeating procedure 2 through 6, the time history for the
seneration, propagation and deformation of wave can be
simulated.

J.Numerical results
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Fig. 2 The distribution of elements

The distribution of elements on the boundaries is shown in Fig.
2 To simulate more effectively the deformation and breaking of the
solitary wave, an arbitrary discretization on the free water surface is
applied.
In this study, the incident relative wave height is ¢, fh=03,
while the length and slope of numerical tank are 60m and 1:30
respectively
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Fig. 3 Time histnrie;fnf solitary waves
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The time history of solitary wave is shown in Fig. 3. These
profiles of wave are simulated at times: r=200A7, ¢=400Ar,
p=600A,  (=RODAr ., r=1000Ar, ¢=1300Ar, ¢=2600At,
f=2650Ar, (=2700Ar, t=3020A1 The height and depth of
breaking wave are aboul ¢, =0420y =053, and ¢, fhy =075
It is ohserved that an increase in wave height and a decrease in wave
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Fig. 4 The breaking of solitary wave
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length occurs due to the reduction in water depth. The wave become
steeper toward the shore and lead to nstability and breaking,.

As shown in Fig. 4, the profiles of breaking wave arc studied at
times: ¢ = 297048, 1 =2980AF 1= 2990Ar = 30004 ,
1=30104 , ¢=30200 . In this figure, it is observed that the
velocities of water particle on crest of the wave are faster than the
velocity of solitary wave and lead to breaking.

Fig.5 Variation of mass and energy

As shown in Fig.5, the mass, potential energy, and kinetic
energy of fuid are studied to confirm the accuracy of numerical
results. It is:

M=p[ odx, E=T+V
L
(32)
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where M.T..) denote the mass of fluid, kinetic energy and
potential energy respectively,

These figures show that the mass above the still water surface
and the total energy become nearly constant after piston has stopped

4. Conclusion

Based on a Laprangian description and a finte difference
method approximation of time derivatives, a boundary element
algorithm is applied to analyze the problems of generation,
deformation and breaking of solitary wave. Fig.3 through Fig 5 show
that the numerical results are reasonable. It is found that breaking
occurs about at xfh =16, and the ratio of breaking height to

breaking depth g, [y, = 0.79
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