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ABSTRACT  
 
The improvements on the oblique planar wave train in a basin 
generated by multiple irregular wave generators are investigated 
numerically in this study. Though oblique waves of any desired 
incident angle can be generated by serpentiform wave generators as 
they were settled in a single line, the generations of waves are limited 
in specific areas in the basin, which the effective experiment area with 
uniform wave field is narrow; therefore, most landforms and/or model 
are located too close to the wave generators. In this study, numerical 
simulations of desired oblique waves are generating separately but 
simultaneously by the two series of serpent type wave generators set in 
L-shape to enlarge the effective experiment area. Based on the 
Lagrangian description with time-marching procedure, a three-
dimensional multiple directional wave basin was developed to simulate 
ocean waves by using the BEM with quadrilateral elements. The 
simulations of perpendicular waves are executed in the first instance to 
verify the scheme, and proceed with the generations and propagations 
of oblique waves in larger angle. Accordingly, the comparison of 
waveforms variation confirms the estimation of oblique waves a 
feasible scheme. 
 
KEY WORDS:  Boundary element method; quadrilateral element; 3D 
wave basin; serpent-type wave generator; oblique wave.  
 
INTRODUCTION 
 
To evaluate wave impact on coastal structures, the variations of oceanic 
physical characteristics must be accurately predicted, e.g. the 
deformation of wave profile, distribution of wave pressure and the 
velocities of water particles. Studies of wave-wave and/or wave-
structure interactions can be carried out either physically in a wave 
basin or numerically with 3D numerical model field experiments, 
accordingly, numerous investigations on 2D and 3D numerical models 
regarding the simulation of nonlinear waves were enthusiastically 
established in virtue of the considerably high-speed development of 
science and technology of electronic calculator during the last two 
decades, the capability of generating multidirectional waves using the 
snake principle has been investigated for nearly half a century, but only 
in the past two decades are they widely used to study these problems 

numerically in three dimensional computer algorithms. Even though 
there have been a large progress in computer technology, development 
of 3D numerical wave tank in practical application have still been an 
arduous task so far due to its considerable quantities of arithmetic units, 
i.e., computational workload and memory requirement, therefore, 
simulations of fully nonlinear waves in three dimensional models are 
still in straitened circumstances, they are generality restricted to two 
dimensions, consequently, 2D models have been extensively used for 
the simulations of higher nonlinear water waves at the beginning. Since 
the propagating directions and the amplitudes as well as the periods of 
waves in real sea are quite unorganized, model tests in multi-directional 
three dimensional wave basins are undoubtedly necessary; hence over 
the last few years, challenging works are ongoing and continuous 
efforts are made to develop practical three dimensional NWTs. 
Multidirectional wave can be generated by a serpent type wave 
generator according to the basic of linear wave maker theory (Dean and 
Darlymple) of each segment. Practical application of this theory with 
reality is the generator so-called “snake-type” or “serpent-type” wave 
generator in a physical laboratory. Unidirectional as well as 
multidirectional waves can be generated spatially by the sinusoidal 
motion and by the basic of the “snake principle” of the segments of a 
serpent-type wave generator, respectively. The incident waves are 
generated by prescribing motions as a series of piston wave makers. 

3D NWTs have been used by Xu and Yue (1992) to simulate 
multidirectional steep waves and their nonlinear interactions with 3D 
bodies. A THOBEM 3D-model based on the potential theory and 
perturbation procedure was developed by Boo et al. (1994) for the 
simulation of linear and nonlinear Stokes 3rd-order irregular waves, the 
applications of the 3D-NWT were first verified by the studying of the 
reciprocal effect between wave and stationed obstacles. Three 
dimensional fully nonlinear waves and wave-body interactions was also 
studied in a 3D numerical wave tank (NWT) by Celebi et al. (1998) 
using desingularized boundary integral equation method (DBIEM) and 
mixed Eulerian and Lagrangian (MEL) scheme. By using a number of 
wave-makers as absorption facility, a method for active absorption of 
multidirectional waves in a 3D numerical wave tank model (NWT) has 
been present by Skourup and Schäffer (1998) based on a traditional 2D 
active absorption method, i.e. 2D-AWACS (active wave absorption 
control system). Furthermore, a finite-difference scheme combined 
with a modified marker-and-cell (MAC) technique was initially 
developed for the investigation on the characteristics of non-linear 
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wave motions and their interactions with a stationary vertical truncated 
cylinder within a NWT was developed by Park et al. (1999), this 
scheme was also further extended by Kim et al. (2001) for the study of 
the characteristic of non-linear multidirectional waves. Analogous 
scheme with the MEL method was also developed for the investigation 
of 3D moored floating body motions in fully nonlinear waves using the 
BEM by Ikeno (2000). Tanizawa and Minami (2001) developed a 3D-
NWT model for the simulation of running modified Wigley hull 
motions in waves by HOBEM. 

Though there are numerous developments of various kinds of 3D 
numerical scheme presented by many researchers, numerical models as 
well as physical tests encounter a same problem in a multi-directional 
wave basin using a bank of serpent type wave generators in a single 
line, the generations of desired waves are limited in specific areas in the 
basin which the effective experiment area with uniform wave field is 
narrow, therefore, most landforms and/or model are located too close to 
the wave generators, as shown in Fig.1, the reflected waves and the re-
reflected waves from the obstacles was unable to be absorbed 
efficiently, which may cause great inaccuracy to the results. Ito et al. 
(1996) tried to absorb the reflected multidirectional waves by taking 
into account both the current and past water elevation data measured in 
front of the wave paddles. Yet, the ineffective dissipation of reflected 
waves and the limitation of the effective region in a wave basin and/or 
3D numerical model seem to contribute seriously to the deviation, and 
this perplexity had been enthusiastically discussed lately.  
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Fig.1 Effective regions in a wave basin 

 
To enlarge the effective experiment area, Funke and Miles (1987) used 
the partial side walls near the wave generator which as they named it a 
corner reflector, for the production of oblique waves by the undesirable 
but intentional reflections, this technique significantly enlarged the 
effective test area, and move the area beyond the wave board. The 
directional wave maker theory with side wall reflections developed by 
Dalrymple was confirmed experimentally by Mansard and Miles (1994), 
an extensive series of experimental investigations undertaken to further 
validating the theory of developing a directional wave maker capable of 
simulating oblique planar wave trains wave was presented. Similar 
experimental investigations on the applicability and reproducibility of 
the multi-face generators with small segments have been developed by 
Hiraishi et al. (1995), the enlargement of the effective test area was 

investigated experimentally utilizing a multi-face directional random 
wave maker with generator faces located along the three sides of a 
basin, this was also known as C-type wave multidirectional wave 
generator in accordance with its shape (see also Ito et al., 1996). Li and 
Williams (1998, 2000) provided a complete second-order solution for 
the three-dimensional wave field, which was produced by the snake-
like motion of a wave generators located at one end of a semi-infinite 
rectangular tank. An optimization method for improving the uniformity 
of monochromatic oblique waves in a wave basin was adopted by 
Matsumoto and Hanzawa (1997) using non-linear least square 
formulation to determine individual paddle motions of a multi-
directional wavemaker. A series of multi-segment wave makers are 
detached and set in L-shape, which was also called as dual-face-snake-
type wavemaker (Park et al, 2001). The effects of random wave 
obliquity and multi-directionality on the wave load are being studied by 
Yu et al. (2003) performing an extensive 3D model tests in a laboratory. 
Development of 3D multidirectional wave basin was also studied by 
Chou et al. (2006) and Shih et al. (2007, 2008) by BEM using a 
massively parallel computing systems and PC Clusters to solve the 
unfeasible and complicate computation when using a single PC. In this 
paper, waves are generated by prescribing adequate snakelike motions 
at the input boundaries of the segment wave maker, desired oblique 
waves are generated simultaneously but separately by the two series of 
serpent type wave generators set in L-shape, which could possibly also 
be done by generators set in C-shape, prospectively. The algorithm was 
based on the BEM with linear quadrilateral elements, boundary values 
are updated at each time step by a forward difference time marching 
procedure. To overcome the CPU problems, parallel calculation 
technique on a PC Cluster was adopted for the calculations. However, 
as mentioned, development of 3D NWT is still a rather tough work, 
extremely long tremendous computing time and extensive memory 
capacity is required for a numerical model by means of three 
dimensional BEM to solve the problems directly in time domain since 
the influence matrix should be set up and inverted at each time step as 
the nodes on the free surface moves to new positions. Nevertheless, it is 
believe that the innovation and great advancement of computer science 
nowadays would overcome these difficulties before long.   
 
THEORETICAL BACKGROUND AND FORMULATION 
 
2.1 Theoretical Development 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Definition sketch 
 

As shown schematically in Fig.2, the origin is located on the still water 
surface with the z-axis pointed positively upwards, y-axis positively 
onward and x-axis positively right. Vertical wall is adopted at the right 
and opposite bank of the basin so as to bear more resemblance to the 
physical wave generation. Numerical wave basin is confined in a region 
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composed of a two serpent type wave generators, Γ2 , Γ4 , located 
individually to the left back corner i.e. the original, at the undisturbed 
free water surface, Γ1 , an impermeable vertical wall, Γ3 , Γ5 and bottom, 
Γ6. Boundaries are bounded and discretized as linear quadrilateral 
elements. Fluids within the region are conventionally assumed as 
incompressible, inviscid, and irrotational. The velocity potential 
Φ(x,y,z;t) must satisfies the following Laplace equation: 
 

2 2 2

2 2 2 0∂ Φ ∂ Φ ∂ Φ
+ + =

∂ ∂ ∂x y z
                                                                        (1) 

 
At the undisturbed free surface, the following nonlinear kinematic 

and dynamic boundary conditions can be expressed in the Lagrangian 
form as: 
 

∂Φ
= =

∂
Dxu
Dt x

                                                                 (2) 

∂Φ
= =

∂
Dyv
Dt y

                                                                 (3) 

∂Φ
= =

∂
Dzw
Dt z

                                                                                (4) 

22 21 0
2

⎡ ⎤⎛ ⎞Φ ∂Φ ∂Φ ∂Φ⎛ ⎞ ⎛ ⎞⎢ ⎥+ − + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

D Pg
Dt x y z

η
ρ

                  (5) 

 
    where D(.) is the total derivative; g, η , and ρ  denotes the 
gravitational acceleration, the surface fluctuation, and the fluid density; 
u, v, and w are, respectively, the component of the velocity of water 
particle in x-axis, y-axis and z-axis directions. Notice that P is the 
gauge pressure on the free water surface and is assumed to be constant 
(i.e. P=0) on the non-absorbing area. 
    Since the boundaries of the vertical walls, referred to as Γ3 and Γ5, as 
well as the stationary bottom boundary, Γ6, are impermeable, the 
particle velocity on the normal direction is null, therefore: 
 

3 5 60 , ,on and
n

∂Φ
= Γ Γ Γ

∂
                                                ( 6 ) 

where n is the unit outward normal vector. Requirement of 
continuity between horizontal velocity U(t) of pseudo wave paddle and 
the fluid particles, the boundary condition on the wave-paddles is 
obtained through: 

 

( ) 2 4; ,U j t on and
n

∂Φ
= − Γ Γ

∂
                                               ( 7 ) 

where j  represents the number of wave paddles. 
 
2.2 Algorithm and Differencing Scheme 
 
    The boundary value problem for the velocity potential is solved by 
the boundary integral equation based on the Green’s second identity, 
the velocity potential at any point within the region can be obtained by 
using the velocity potential Φ(ξx, ξy, ξz;t) and its normal derivative 
∂Φ(ξx, ξy, ξz;t)/∂n on the boundaries, the corresponding 3D free space 
Green's function is defined as: 

( ) ( ) ( ) ( ) ( ), , ; ,
, , ; , , , ;

Γ

⎧ ⎫∂Φ ∂⎪ ⎪⋅Φ = − Φ Γ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

∫ x y z
x y z

t G
x y z t G t d

n n

ξ ξ ξ ς χ
α ς χ ξ ξ ξ                                                                                                                 

( 8 ) 

1
( ) 1/ 2

0

⎧
⎪= ⎨
⎪
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inside the fluid domain
α χ on the smooth boundary

outside the fluid domain
                            

( ) 1,
4

=G
r

ς χ
π

                                                                                  (9) 

( ) ( ) 2

, 1,
4

∂ − ∂
= =

∂ ∂
G rG

n nr
ς χ

ς χ
π

                                              (10) 

( ), ,= x y zχ                                                                                         (11) 

( ), ,= x y zς ξ ξ ξ                                                                                    (12) 

( ) ( ) ( )
22 2= − = − + − + −x y zr x y zς χ ξ ξ ξ                                  (13) 

 
The linear quadrilateral element was being adopted in this study, the 
simplest quadrilateral element is defined by its four corner points, the 
location of each nodes within the element need to be transform 
Cartesian (x, y, z) to homogeneous coordinate (ξ1, ξ2, η) by conformal 
mapping process, as shown in Fig.3, where ξ1, ξ2, and η are, 
respectively, the three directions corresponding local coordinate x, y 
and z.  
 

 
 

Fig.3 Conformal mapping process of coordinate transformation  
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                                              (15) 

 
2.3 Evaluation of Domain Integrals 
 
Consider the development of a 3-D model, the domain was bounded by 
six boundaries, therefore eq.(8) can thus be rearranged and written as:  
 

( )
6 6

1 1

, , ; ( , , ; ) * ( , , ; ) *
p p

x y z x y z
P p

x y z t t q dA t q dA
Γ Γ

= =

Φ + Φ = Φ∑ ∑∫ ∫α ξ ξ ξ ξ ξ ξ

                                                                                                            (16) 
   The integral representation of the solution for the Green function may 
be written for the boundary which has been discretized into Np (p=1~6) 
linear quadrilateral element, thus: 
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π

        (s=1~4)                        (18) 

1 1

1 2
1 1

1 1
8 Γ− −

= ∫ ∫ ij

s
ij sg N G d d

r
ξ ζ

π
                  (s=1~4)                       (19) 

 
r represents distance alone the source, i, and the evaluated point 

over integrated segment, j. 
 
2.4 Boundary Conditions on wave paddles 
 
The 3-D numerical rectangular wave basin of constant water depth h 
contains two series of segmented wave generators occupied one wall of 
54 segmented wavemakers long and another of 54 segmented 
wavemakers width as shown schematically in Fig.2, the width of each 
waveboard is selected as w=0.5h, each segmented generator can be 
similarly threatened as that in a 2D NWT, i.e., in accordance with the 
continuity of the horizontal velocities of the wave paddle and that of 
adherent water particles, the velocities are extrapolated at the interface 
with approximately without distinction between the wave paddle and 
fluid. To simulate the oscillating motion of the arrayed wave makers in 
a physical wave basin (e.g. the serpent type wave generator in NTOU, 
National Taiwan Ocean University) may be a rather difficult job for 
numerical model due to the discontinuous phase motion between each 
wave board, yet this can be solve by considering each node as a hinge 
that links the detached segments (wave boards), as shown in Fig.4. 
Waves are generated separately by the two series of serpent type wave 
generators, though they were set in L-shape, the validation undertaken 
in this study is to put the theories to the proof, particularly the 
possibility of the continuity of produced wave crest lines. The elevation 
of free water surface is related to the velocity potential resembling in a 
2D-NWT, i.e. it converts velocity to wave height, the relation between 
the velocities of wave-generators and the characteristics of the 
generated waves can be illustrated by the basic of wave maker theory 
(Dean and Darlymple, 1984). For multidirectional wave generation, it 
was clarified through the physical experiments that oblique waves can 
be generated by setting difference phases between adjacent segments, a 
numerical serpentiform motion is also established likewise by 
prescribing the velocities based on the fluid particles velocities of water 
wave theory with a series of piston-type wave generators, and the 
velocities on the wavemaker boundary for the generation of any desire 
wave form are therefore described as fellow: 
 
1. For periodical wave generation, the velocities of the first (along x-
axis) and second series (along y-axis) generators are given by: 
 

1 0( , ) ( ) sin( cos )= −U x t ζ f t kxα σ σ θ                                                  (20) 

2 0( , ) ( ) sin( sin )= −U y t ζ f t kyα σ σ θ                                                  (21) 

2
sinh cosh( )

2sinh
+

=
kh kh khf

kh
α                                                                 (22) 

                          
Where angular frequency 2=σ πf , f denotes the frequency, ζ0 is 

the incident wave height, k is the wave number, h is the water depth, θ  
is the angle of incident wave and ( )α f  the transfer function. 
 

 
 
Fig.4 Motion of the arrayed wave makers in a physical wave basin and 
present numerical model 
 
 
2. For solitary wave, the velocities can be given as: 
 

2 0
1 0 3

3( , ) sec [ ( ) cos ]
4

= ⋅ − −c
gU x t h C t t x
h h

ζζ θ                                       (23) 

2 0
2 0 3

3( , ) sec [ ( ) sin ]
4

= ⋅ − −c
gU y t h C t t y
h h

ζζ θ                                       (24) 

0( )= +C g h ζ                                                                                     (25)  
 
where g, C, and θ  are the gravitational acceleration, wave celerity, and 
the angle of incident wave, respectively. tc is a characteristics time scale, 
which is defined as half the time of the stroke. 
 
3. For unidirectional irregular wave, the velocities can be given as: 
 

1
1

( , ) 2 ( ) cos( cos )
=

= ⋅ ⋅ − −∑
N

o n n n n
n

U x t dfS f t k xσ σ θ ε                                (26) 

2
1

( , ) 2 ( ) cos( sin )
=

= ⋅ ⋅ − −∑
N

o n n n n
n

U y t dfS f t k yσ σ θ ε                                (27) 

2=n nσ πf                                                                                             (28) 

2 4 5 4
0 1/ 3 1/ 3 1/ 3( ) 0.257 exp[ 1.03( ) ]− − −= −S f H T f T f

                                  (29) 

2
0( ) ( ) ( )= ⋅S f α f S f

                                                                         (30) 

 
where H1/3, T1/3, f , εn, and N denotes respectively the significant wave 
height, associate significant wave period, the frequency, a random 
variable number between 0~2π and the total number of sampling.  
 
4. For multidirectional irregular wave, the velocities can be written as: 

1
1

( , ) 2 ( ) cos( cos )
=

= ⋅ ⋅ − −∑ n

N

o n n n n f n
n

U x t dfS f t k xσ σ θ ε                                      (31) 

2
1

( , ) 2 ( ) cos( sin )
=

= ⋅ ⋅ − −∑ n

N

o n n n n f n
n

U y t dfS f t k yσ σ θ ε                                     (32) 

( , )=
nf nh fθ θ                                                                                             (33) 
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where θ f n denotes the directional spreading function related with the 
variable angle of incident wave related to the frequency of each 
component waves. 
 
2.5 Parallel Computing on a PC Cluster 
 
The quantity of nodes on the free water surface requires 81 multiplied 
by 41 nodes, and further, plus the other five surface’s makes an amount 
of approximately 5914 nodes, and is an arrangement for the matrix of 
order 5914×5914 when calculating. Since the computational domain 
continuously changes, the influence matrix must be set up and solved 
every time step, consequently, the computation generally requires 
substantial CPU time and iterative solvers, therefore, the modelling of 
3D NWT using single personal computer is unfeasible and is being 
superseded by massively parallel computing systems and PC Clusters; 
thus, effective parallel programming has become critical to the 
progression and development of 3D numerical model. The PC cluster 
we use comprises eight dual Pentium 4 CPU's workstations putting 
together and interconnected, each of which consists 4 GB of memory, 
in order to be able to solve the resulting large matrix, parallel matrix 
factorization algorithm was developed, in which the original inverse 
matrix was partitioned into 8×8 submatrixes. 
 
NUMERICAL SIMULATIONS AND DISCUSSIONS 
 
3.1 Generation and wave form deformations  
       
The generation, propagation and deformation of regular and irregular 
waves in a three dimensional wave basin of constant water depth h are 
simulated, the wave is generated by an array of piston type wave 
makers oscillating at the constant water depth of h=0.5m, the basin is 
20m wide and 40m in length, ζ=0.05m and ∆t=T/200, T denotes the 
wave period. As mentioned previously, the boundaries, Γ1~Γ6, are 
divided into N1~N6 discrete elements, where N1=4800 (4961 nodes), 
N2=120 (183 nodes), N3=120 (183 nodes), N4=120 (183 nodes), N5=80 
(123 nodes) and N6=300 (341 nodes) was selected presently. Although 
the wave field is produced based on the snake principle, namely that 
serpent-type wave maker will produce any desired type of waves 
propagating obliquely to the plane. However, the finite width of the 
basin with fully reflecting sidewalls results in the wave generations 
being influenced by sidewall reflections, therefore in this article, the 
simulations of perpendicular waves are executed in the first instance to 
verify the scheme, the unidirectional periodical wave propagation was 
first carried out for simplicity. In order to verified the consecutive wave 
profiles of desired oblique waves which are generated simultaneously 
by two separate series of serpent type wave generators set in L-shape, 
the distribution of the velocities on the x-y planar can thus be obtained 
as fellow:  
 
1. The variation of the velocity for oblique periodical wave generation: 

The simulation of the generations of oblique regular periodical 
wave utilizing different incident waves angles, 90° and 45°, are shown 
respectively in Fig.5 and Fig.6 (see Shih, 2007), in which x and y axis 
denote respectively the tangential direction of the serpent-type wave 
generator in series 1 and series 2, the distribution of the velocities can 
be obtained by an equation combining eqs.(20) ~(22) as:    

 
0( , , ) ( ) sin( cos sin )U x y t ζ f t k x k y= − −α σ σ θ θ                                       (34) 

 
Furthermore, the preliminary modeling result of the generation of 
periodical wave in a basin using the BEM model is represents in Fig.7, 
from which we observed that some waves around the x-axis may be 
rather sharp-pointed, because even though there are 4961 nodes 

 
Fig.5 Spatial distributions of velocity in x-y planar for periodical 
regular waves when θ=90°(Numerical solution).  
 

 
Fig.6 Spatial distributions of velocity in x-y planar for periodical 
regular waves when θ=45° (Numerical solution). 
 
distributed over the water surface, i.e. 81 multiplied by 41 nodes (40m 
× 20m in actual size), yet, in terms of the present case h=0.5m, each 
wave length only comprises not more than 8 nodes in the direction of y-
axis, especially near the generator, this number is inadequate for a 
smooth wave form. Nevertheless, the increasing of nodes also 
represents the increasing of calculating time and requirements of 
computer hardware capacity. Hence, development of 3D NWT is still a 
rather tough work as mentioned, an extremely long tremendous 
computing time and extensive memory capacity is required for a fully 
nonlinear time-dependence numerical model.      
 
 

Fig.7 Spatial distributions of wave height in x-y planar for periodical 
regular waves in a wave basin when θ=90° (Modelling) 
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2. Distribution of wave height for unidirectional irregular waves: 
Random waves are usually a combination of numerous, 

theoretically unlimited, components of sinusoidal waves. The 
generation, obliquely propagated of irregular wave in a three 
dimensional wave basin can be simulated by adopting eqs. (26)~(30) as 
the governed condition on the wave generator based on the snake 
principle, spatially sinusoidal motion of a serpent-type wave maker will 
produce any desired type of waves propagating obliquely to the plane, 
however, unidirectional random waves comprised various of 
component waves merely in one single direction, thus, the spatial 
distribution of wave height in x-y planar to the generations of 
unidirectional irregular wave perpendicularly is shown in Fig.8. 

 

 
Fig.8 Spatial distribution of wave height in x-y planar for uni-
directional irregular waves in a wave basin when θ=90° (Modelling) 
 
3. Distributions of the wave height for multidirectional irregular waves: 

As interpreted previously, random waves are commonly an 
accumulation of numerous components of sinusoidal waves with 
random phase, this was known as RPHM (Random Phase Spectrum 
Method), yet, multidirectional random waves are more complicated but 
realistic about comprising of various monochromatic component waves 
not only with random phase, different amplitude and frequency, but 
also in various directions, nevertheless, the spatial distribution of 
multidirectional wave groups trains exists a target directionality known 
as the " main wave direction", θ, the measurement of directional spectra 
can be accomplished by several techniques such as the maximum 
entropy method (MEM), the Fourier Expansion Method using a cos2 
type function (FEMcos) and by using a sech type function (FEMsech) 
usually apply to wind waves…etc., the spatial distributions of wave 
height in x-y planar of multidirectional random wave when θ=90° is 
shown in Fig.9. 

 
Fig.9 Spatial distribution of wave height in x-y planar for multi-
directional irregular waves in a wave basin when θ=90°. 

4. Distribution of surface elevation for the generation of solitary wave: 
The spatial distributions of velocity in x-y planar to the 

generations of solitary wave with variable propagation incident 
directions are shown in Fig.10. Solitary waves are generated by a long 
stroke motion of piston wave generator in a 2DNWT as well as 3D 
unidirectional NWT, similarly in a multidirectional 3D wave basin, 
oblique solitary wave can be generated by a series of stroke motion 
with a slightly difference in time of each segmented piston, and the 
motion of each piston is governed by a control signal which is calculate 
directly by Eqs.(23)~(25). 

 

 
Fig.10 Spatial distribution of wave height in x-y planar for solitary 
wave in a wave basin when θ=90°. 
 
5. Variations of the wave height for oblique periodical regular waves: 

The spatial distributions of velocity in x-y planar to the 
generations of oblique regular wave in different time steps are shown in 
Fig.11. In a multidirectional 3D wave basin composed of multi-face 
serpent type wave generators with individual controlled paddles, the 
motion of each piston is governed by a control signal calculate directly 
by Eqs.(20)~(22). Fig.12 shows the action of each segmented generator 
in series 2 from t=1T~8T(T remains wave period) and the contour map 
of wave height distributions is also shown in Fig.13, while a 
conspicuous slight angle can be found in the left back corner near the 
origin. However, some accurately investigations on the spatial 
distribution of wave direction and angular spreading of uni- as well as 
multi-directional wave would be prospectively studied. 

 
3.2 Conservation of mass and energy  
      
The present numerical model was validated through convergence test 
according to the conservation of energy and mass determined by 
Eqs.(35)~(38) as respectively shown in Fig.14 and Fig.15, in a oblique 
periodical wave case, the mass above the still water level is equal to 
that of the area the paddles have swept (back and forth), mass of a 
surface can be evaluate by surface integral where η is orientable and n 
is a unit normal to the surface, else, the total energy is equal to the 
energy transmitted by the paddles, which slightly increase along with 
the kinetic energy received from the paddles, however, the total mass 
on the surface seems to descend progressively as the generation 
proceeded, the cause of this phenomenon is not yet clear, hence, 
investigations to this appearance would be carry out anew, 
prospectively. 
 

1
( ) ( )zV t e n d

Γ
= ⋅ Γ∫ η                 (Mass of surface)                                    (35) 

1~6

1
2kE d

nΓ

∂Φ
= Φ Γ

∂∫ρ              (Kinetic energy)                                      (36) 
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k pE E E= +                            (Total energy)                                         (38) 
 
 

 

 

 

 

 
 
 
Fig.11 Spatial distributions of wave height for oblique periodical 
regular waves in a wave basin when θ=80° (T remains wave period).  
 
 

 

 
 

Fig.12 Action of each segmented generator in series 2 when θ=80°. 
 

 

 
 

Fig.13 Contour map of wave height distributions for oblique periodical 
regular waves in a wave basin when θ=80°. 
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Fig.14 Variation of Energy in the Basin 
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Fig.15 Variation of Total Mass on the surface 
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CONCLUSIONS 
 
A three-dimensional multidirectional wave basin has been developed to 
simulate ocean waves using the BEM with quadrilateral elements. 
Based on the Lagrangian description with time-marching procedure, 
any desired oblique waves can be generation by two series of serpent 
type wave generators set in L-shape, the simulations of perpendicular 
regular, irregular and solitary waves as well as multidirectional random 
waves are executed, also proceed with the generations and propagations 
of oblique periodical waves in a small angle, some conclusions are 
summarized:  

1. In this article, the numerical model was developed using the 
3DBEM with Lagrangian time marching procedure, and the boundaries 
was discretized into 5914 linear quadrilateral elements, since the matrix 
should be set up and inverted at each timp step, a tremendous 
computing time and extensive memory capacity is required for a fully 
nonlinear numerical model, it takes almost 2 hours of time interval 
between each time step, nevertheless, it is believed that the innovation 
and great advancement of computer science nowadays would overcome 
these difficulties before long, however, since desired oblique waves are 
generated simultaneously but separately by the two series of serpent 
type wave generators set in L-shape, the rudimentary results of the 
simulations indicate that the present model a feasible scheme. 

2. The model was put to the proof by the cases of sinusoidal 
regular wave, solitary wave, unidirectional as well as multidirectional 
irregular waves, however, in the oblique periodical regular wave case, 
the total mass on the surface descend progressively as the generation 
proceeded, investigations to this appearance should be carry out 
prospectively, besides, some accurately investigations on the spatial 
distribution of wave direction and angular spreading of multidirectional 
wave case would be studied. 

3. Impending simulations of the generations and propagations of 
oblique waves will proceed with larger angles. It can be anticipated that 
the influence of reflected waves cause by the impermeable vertical wall 
may cause great errors to the estimations, especially on two extremities 
sides and edges of the wave generator. Therefore, development of the 
present conditions on Γ3 and Γ5 into a so-called “snake absorber” is 
imperative and to be consider prospectively. 
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