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Abstract

This paper deals with a theoretical method of calculation of the fluid mo-
tion, when a sinusoidal plane wave incidents to a permeable breakwater of arbi-
trary shape at constant water depth and shows that the problem for impermeable
breakwater is solved as a special case of this methed.

The method described here is the extension of the author's rﬂ&thﬂdur of sa=
lution for two-dimensional permeable breakwater by the method of continuation
of velocity potentials for two different fluld regions into three-dimensional
problems by means of Green funckionsa.

Here, the analytical process of calculation is presented and as represen-
tative examples, wave height distributions and wave forces arcund an isolated
elliptic- and ractangular breakwater are calculated and compared with experi-
ments in wave channel.

The principle of this method is also applied to the analysis of submerged
and semi-immersed fixed cylinder and the motions of fleoating body of arbitrary

shape.
Introdution

We have many investigations on wave scattering problem for impermeable,

straight breakwater, but few of permeable cne, especially, of arbitrary shape.
Here, we show a method of calculation for fluid motion arcund as isolated per-
meable and impermeable breakwater of arbitrary shape.

Assuming the fluid resistance to be proprotional to the fluld wvelocity, the
fluid motion in a permeable breakwater regiocns has a velocity potemtial. And
the motion in outer region of breakwater has also another velocity potential.
These velocity potentials are developed into infinite series of orthogonal
functions in termg of the depth z from still water surfaces, with eigenvalues

determined by free surface and bottom boundary conditions in both fluid regions.

And  the coefficients of terms in these infinite series are the functions

of horizontal coorinatea ([x,y) and satisfy Helmholrz's
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equations inherent to their own eigenvalues. Hence, by Green's identity for-

k mula, these coefficients at any point (x.y) in fluid region are expressed by

; their boundary values and normal derivatives to the boundary. Moreover, ow-
ing to the singularity of Green functions on the boundary, the boundary wvalu-

] es and their normal derivatives of these copefficients are related by integral

! equations. Then, dividing the boundary into small elements and taking the

1 sum, these integral equations are transformed into linear summation eguations,

1 which relate the values and their normal derivatives of coefficients on the

boundary.

on the other hand, by the conditions of mechanical continuities of mass
and energy flux through the boundary surface induced by fluid motions in out-
er and inner regions, the wvalues and normal deriwvatives of above coefficienta
for outer region are linearly related to those for inner region. '

Thus, we have two kinds of linear relations between the codfficients and
their normal deriwatiwves on the boundary and by solving these eguations
gimnltaneocusly, we obtain the boundary walues and derivatives of coefficients.
Then, by Green's identity formula, the welocity potentials and so the fluid
motion at any point (x,y) in both reglions are completely obtained.

As for the impermeable breakwater, the velocity potential in outer reglon
is expressed by conly two terms because of identical wanishing of scattering
terms in infinite series and alsoc normal derivatives of the coefficients
vanish by the kinematical condition on the boundary. Hence the coefficients
are determined by only one integral eguation, from which wvelocity potential
is easily determined.

I MAnalysis for Permeable Breakwater

A sinuoidal plane wave of frequency o(=2n/T : T iz wave period)} is assum-
ed to incident to a permeable breakwater of arbitrary shape at constant water
depth h: As shown in FPig.l, the origine of ccoridinate system is fixed at
still water surface, x and y axes are taken in horizont, and z axis is wer=-
tically upwards. The cross=-section of breakwater is indicated by a closed
curve D, which shows the boundary between cuter and inner fluid regions.
Floid motion’ in outer region I is assumed to be small amplitwde wave motion
in ideal, imcompressible fluid, and the one in inner region II to be Darcy's
flow in porous material of void ¥ with fluid resistance proportion is p.
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Then, fluid motions in both reglons have velocity potential ¢ (X,y.zlexpli=iot)
and wave function satisfies the following Laplace's egquation.

aZe 2% 3%
" g - D (1.1
axt ay? a2l

(i} Wawve Function ¢1[x,y,z} in region I

The general solution of Eg.(l.l) which satisfy free surface and bottom
boundary conditions and radiation condition is expressed as follows:

o0 cosh K(zth! o g cos k_(z+h)
@ e A S Tl et o e e R - U e

where g is gravity acceleration and Ly is the amplitude of incident wave
which is given by £5= ;ncos[k[x cosu+ y sinul+ot], where w iz the incident
angle with » axis. k and k are roots of the following equation.

e el
kh tanh kh = knhtan krﬁ a h/g (1.3
fn{x,y}curraﬁpundﬁ to the incident wave potential and is expressed by the
real part of the following eguation.
fn{x,y] = =1 exp[=iki{x cos w + y =inw)] (1.4])

fl:x.y1 and Iénjrxry] are unkpown functions which satisfy the following

Helmholtz's eguations.

el M. oy "L e i
—t et edy =0, —3—+ —3 - k2efMa0 1.s)
ix ay 3 x iy

{ii) Wave function ﬁzix.y.tl in region IT

Fluid motion in permeable material with void ¥ and resistance coefficlenty
is determined by wave function ¢2‘ Fluid velpcity components u.i[i.i'l,Z,]]
and pressure intensity p are given as follows:

ad ’ '
o o it 181kt -ioe
ay 3%, e r PAE Siglltiu/io) dae gz (1.6)
and ¢212,y,3] which satisifiea free surface and bottom boundary condition

is expressed as follows:
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at K
a # 5] caosh kgiz+h] "
eylx,y.8) = — & I, %y —— (1.7}
5=1 cosh ksh
where Ea are the complex roots of the following eguation.
F.‘h tanh k_h = (l+iuv/o) a’nsg P L ot I P 50 TP ) ' (1.8)
fé’]{x.y] are unkpown functions to satisfy next eguation.
alfisl 32f;5’ g ks
i G —1— +k f] = 0 {1.9)
dx ay o

(iii) Respresentation of f,. fin], f;E] by means of Green's identity formula

Indicating the point on the boundary D by (E.n) and the point in £luid
region I and II by (x,y)., the distance between them is

PR e |
rix,y:E,mn] = r{f n:x,y) -#Ex-ﬂh + (y=n] (L.10)

Green functions which are particular selutions of Eg.(1.5) and (1.9) with sin-
gularities of order log r when r tends to zero and satisfy s.ommgr!eld'sub
radiation condition when r tends to infinity are —%Hélitkrb for fl' —Kn[knrifl

far f;“’ and - %Hélhtﬁarb for f;EF, whare HélF and En are Hankel function of

the first kind and mcdified Bessel function of order zero. respectively.
Then, follewing to Green's identity formula, £ (x.yl, f? [x.y] and fé Fixow)
are represented by their values flii ﬁ}. f;n]{i WM}, EE {E,n} and their nor-
mal derivatives £, (E.n) n&f [Een) kv, fn {E.n} -Efl ]{E nlkaw

Bar i) = §El" tr..n],f}r.au on the bc-undary D as fnllmrs

ey R 11] gil)
£, (x,¥) —-I [£ [E,nlig -z H (kxl} - (- 2 Hy {kr]]fl{i (N))ds {1.11)

£17) (x, r}--—g (e g mgzi- Kﬂl:k £l /m= (kR (k) mESY (6,00 1ds (1.12)

(s) 1 (s) Ll & i e P L
£, tx.w-ifnrfj (Enii=i-3 (kgr))= (-3 ki

C LE:}]
(® e ¥ (g,n)1as01.13)
wherevis outward normal te the boundary and integral is the line integral
taken in counter-clockwise direction along the boundary D.

Taking the limit when point (x,y} tends to any point (£'.n') on the
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poundary, Eqg.{1.11) {1.12) {1.13) give the faollowing integral eguations.

i41)

SUAR UL -Iblfl¢ian]——1——ﬂ (kR ) = { =k (kR (£ n) 1as (1.14}

L RN (n} . i E
fz iE"m"] [;ifz tt.n!i;t Kﬂ:k“RwaJ { kxatknnjfwﬁfztg,nb]ﬂa [1.15}

3]1g’,n'l-jnif;“’:E,nnggc—%ﬁél’tEERJJ—t—étuél’:Esnsﬁiga’ta;n}]da (1.16)

whare R = JﬁE'—EJI + :n’—npl

(iv) Tramsform of line integral to summaticn

Dividing the boundary curve D inko small N segments Sj [}=1,2,3,..H)
by W points and indicating the central point of each segment by [Ej.n]]. the
line integral along D is replaced by summaticn as follow, for example:

]
Hikm)ds = £ £ (5. !; 3_-Lall! ke, 44)1ds {1.17)
j=1

g, igt
Iﬁflig‘“’au‘ o 5,3

F

o e ; .
where .Rij = tgj Eih +* inj ni# and [Ei,ni} is any fisxed point correspond-

ing to (E'.,n').
Thus,Bq. (1.14) (1.15) (1.16) are written by the following summation egua-

tions.
£(1) + ]E (R 90-a E 1) = (1.18)
£ 4 + o e 2 B T R (1.1%)
i=1
AL B E{E“HW’U}HQ?:“Hn} [L.20)
i=
where £, (7). ?lﬂilr,.._.. etc. represent fltgj,ﬁjh, El[ij‘"jr""' ete..and £
3 @ty % il b1
th = [ ] Ekﬂ ﬁlda B {as { zﬁa Ikﬁij#rds
[n]_ g i =, . = I iy
i] Esj‘ kKu:knRijjfwjﬂs . HEij &Sjavi KﬂtknRijFIﬂ}ds ?
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(s) {1} gls) 101}
Bij = gﬂs (- jkﬂ 1k Rij}}dn ' 1] = J;s 33, {E R, j]}da {1.21)

) ]
By tEj E417 + ‘“j'“i’
(v} Mechanical continuity conditions along boundary D

Mass and energy flux induced by fluid motions in inner and cuter regions
should be continupus through the immersed surface of breakwater. These con-
ditions are satisfied by the continuities of fluid velocities normal to the
boundary D and of the fluid pressure intensities at the boundary. Fluid
pressure in outer and inner reglions By and Py are given as faliouu[jbr

B,/ = itltu,y,z:e_lUt v Byle = if.|liéﬂgl{E iztx,y,z!e_iat (1.22)

Therefore, the continuity conditions are expressed as follows:

l+ipv/sa
v

aﬁliﬂrn,$]f3u 'Iizlﬂ.h,zﬁfiu f ?lIL-H,:] - fzﬂﬁ;nrzﬁ (1.23})

Substituting Eg.({l.2) and {1.7) intc above equations, we obtain

4 cos k l:th] coshk_ (z+4)
= -] h kiz+h] n [£:3)
ME (e, n)+E (e, 12202+ T 7 t:.n}—-—-——.; T =
. (1] 1 cos n=1 cos k a=1 3 uoshksh
------- R R P b )

CoOs h (z+h)

£q (€, n)+£, (§,n) 1S28RKizh) E ginl 1:..11——(-,.—-

cosh E_(z+h)
¥ fj‘” i P - e Sy {1.25)
s=1 cosh kgh

1+iuV/o

Multiplying each term of above egquations by cosh kiz+h) and cos kn{=+h:,
_}- integrating from z=-h to z=0, we have next relations.

Its!l 1
£ (E,n) = -[£, (6, + 3 ¥ ————a——-IE'H | 11.26)
5 0 Mo s=1 1-(3 /)
(s}
£ [En)
e gm = £ i LA {1.27)

n s=1 1+(} +A 1
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zis)
E3 (£}

Ejtgan) = =(F fg.pp + & F -4 {1.24a)
1 0 ¥o =1 1-13 /30
zis)

= Es" " Lgeny)

23" (g m) = - ﬁ— oA {1, 29)
n s=l1 l*[lsflnﬂ

AT " i _ = .
a= iz (1+invio), B= ipv/o , AU- kh, A =kh . hi=ik ik
i1.30]

S ¥ i
Ny=3i1+24 /sinh2h ) , N,=3(1+2%_/sin2i_| , !nz;,na-afuza,nukau

(vi} Determination of !1, Eénh. I;’].,... etc. on the boundary D

Eq.(1.18) {1.19){1.20)and (1.26)(1.27)(1.28).{1.29) are the relations to

determine fl’ E;nh .......... an the boundary,
From Eq. [1,20!,'?;EJtEi.ni] is expressed by f;aliﬁj,nj] as follows:

N
(s} , (8}

E ¥ a

key k1 Cki (1.31)

N
is) o (8} 4 (8} . iml _ 1
31 (i) jElHij £37 13} where M7 T

ij

where 4(s) is the matrix by EI;}, ﬁé?j is the determinant, given by remcwving

the "k"th row and the "i"th column from s (s) and then multiplying{=1) iy and

(=) _ z (8} ! : = 3] & =l k=
?kj ij + ij ¥ ﬁkj is Kronecker's delta,i.e. 6kj—ﬂ[k#jl : =1lik=j).

Substituting Bg.[1.26)(1.29) into Eq.{1.18) (1.19}), and then eliminating
fésjby Eg.{1.31), we have next linear simultanecus egquaticns in term of fi*:.

: B N
B —2 el in s Bmg e E a0 Gy
a=l 1-(X_/A.) j=1 * 1 g=1 7

H
= - Ha!thLJ + jEllijfu[j#—hijEEt]J]

{1.32)
M - 1]
E —s——ytei™ ) o £ Bf1ef% (5 - a[0 p wiBlel® gy
s=1 1+1{% _/a_} j=1 11 11 k=11
a2 n
=g TS S T D

Abowve equations are applied to i=1,2,3,...N. If we take n ang s to n*
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" and 5*,respectively, we have (n*+l}N equations for s*Nunknown f§5h. There=

fore, taking s*=n%+l, all of frE} (g=1,2...8%) are determined by solving
£q.(1.32) and then E{%, £, E,£i™, i are obtained by Eq.(1.31) (1.26)
{1.27) (1.28) (1.29) ,respectively.

(s}

‘n}{x.y} and EJ lx,¥)

(vii) Determination of £;(x,y), £,

fltx.y}.fén}[u,yj and f;sh:x,yl at any peint of fluid regiom are calcu-
lated by Eg.(1.10)(1.12)(1.13) as follows:

H N
. 5X = o {n) . S ={n} (n) _glimlgin) ..
fposi=g I UatiliclgRdile £ saing oy e ok By 00
{1.33)

H
{s) o =[5} (2] _ glBlgis)
£ aEAn 2551[Exi B By 5 an
where ﬁx"'ixj""' are those which are given in Eg.(l1.21) by replacing
EEi.ni} by (x.v).
Thus, wave function ¢, (x,y,2) and #,(x,y,2] are completely determined and
the fluid motions are fully made clear.

(wviii} MNumerical ewalulation

.i.i and ii.j in BEg.(1.21) are calculated numerically, after Lee(1971) f‘}

in the following way.

v 2 F] mc.]i + {&n.}

Beo = {E=E.1" + (n.-n.} 5. =

13 " 478 Lh L VL : g {1.34)

-1 = =1 Z

bEj 2{£j+l Ej_l} ﬁnj E'“j+1 “j—l}
Noting that when kr tends to zero,

1) " kr (1) _ i 1
Hyo ikr) % 1+2i(log— + rl/* Hy"U(kr) § -230 3p

T=0.577216...000.. (Eluer's constant)
for j#i, we obtain
o 1.1}
“ij i“n iknjj}kdsj

= o AR E.~Ey - My
Ryj = gy #knijﬂ—gt-;knnj —g—;maji

for j=i
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1 ka5,
Ay = =ly-l+tlog— = in/2)
oo # (1.37)
= 1
Bis T3 iEaMan5agNsl s 95;
where
S e 5 E“-1+1“51 Ei=hig ;
a iﬁsi ss T AE; (WAS HAE. ) CRE, HAE] as +-!-si -1
(1.34)
ROTL .| . S § AL L L O
B 2."1.51 % 53141*"""51'*"551-1 i 1+|'.‘|S ﬁEi*.l!.Si_l
Similary, other terms in Eg.{l.21) are as follows:
k_AS
B s 2 g s S n'oy
13 Ikﬂtknnijhhﬁsj ! 11 Fivr-1l+log F] 3kﬂ51
=in E =E4
G =—3t{kl.'tJr-—-—}:.-:.nj -Lkm::l
B § B (1.39)
pie? o L H”'] (kR ) kaS E{ﬂ- L 141 kﬂﬁsi-iw;Z]kas
‘i3 z g1 gt Bpp- il ELagr— i
g -£ fa=-ng _
B8 =i m:kn t—Lhan e el T (1.40)
3 j Ri' a 7]
1] ]
5™ and E[%) are the same as Bii. And £,09) and () are as £ollows:

fD{J] = '1Exp[—1k[ﬂjtosm + njsanu}}

_ &, g inu— &0 . CO05m
fytdr = i S o = pr[—ik[chuau . njainm}]

a5
]

[1.41})

(ix) Convergence of the infinite series in &, and @

1 2

For the existence of wave function Fl and ﬁz. infinite series in the

righthand sides of Eg.{l.2) anpd (1.7) must be uniformly econvergent in x,y,z.
It is diffiecult for the authors to prove the convergence but it is estimated

in the following waw.

For large value of n in Eg.(1.2), we have
cos hntz+hj
COS knh

2
PRl S P (n} ks [1:3]
knh L and E f2 [x,¥) = E E2 (¥,¥)coa k = (1.42)

PPy e

Jhais i
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Above geries is convergent for Dzzz-h, if serles E Eénlix,y] ia convergent.
While, sequence El;] and ﬁ:;] in Eg.{l.33] are manctonic decrease for in-
creaging n at any point (x.y), 50 that if the serias ; f2||'|] (£,n] and

g f;n]¢£rn] convergaes, Series E Eénjdx,y] alza canverges. Similarky,if
serias g fés]ia.n] converges, series % f;s]ﬂx,y]r cash EEJZhh]fcnsh Esh

alsa converges. 1

Wa have
2 2 2
E {nn) v g Oh Wp l 5 Lo"h
W = = r A_ & == S o+ i (ETA——= St {1.44]
n zuzhfg 5 g 0 =1 EN g
for large m and =. Therefore, in Eg.(l1.27)
(=) (s}
E E £, (E.n) . _ uzh : " ; 53 (£.n) ; 1L.45)
T &y * 2 g B ol pW
an1+l:.ﬁ.5,—"in:l 1 ¥ n -s +21“—2 g o hfg

bbove series are convergent, if series E IQSJtE.ﬂh converges, and then

(=)

E f;nj[g,n# CONVETges .
Ls} [ isﬁ“éii

Moreowver, from Eq.(1.401, EiJ «<E;;  and Eij
Therefore, Eg.(1.20) approaches to the felleowing eguation for large s.

for large &.

sl8), 408} . (=213 l=s] -
[1-Ej; L7 04} + B o7 [4) = 0,

i

from which ={a}

1-E
shgh oo il [s}

f3 [i} = —ET;T—— f3 [L} (1.46)

ii

where Eig* is indepentent on 5 and E;:' ia approximated as follows:
kas, STAS
(8) i . L.

Biy' = {-l+il4g 72} ) {L.47)

Eif] increases with increasing s, so that from Eq. (1.46), E ?;Ejﬂﬁrnl con-

verges, if i Egsﬁitan? converges.

Thus, if z f;sjit,nh Converges, E E;SJEE;uJJ E f;h][E;ﬁJ and E ?énliﬂrﬂ]

are convergent, and wave cunctiocns #l[x,v,zl and ¢2[x.y121 exlst. Buk it is
difficult to prove mathematically the convergency of g f;$]¢£JuJ and iz eski=
mated numerlcally, as shown in later example.

In practical calculations, infinite series are replaced by finite series,
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Hence, the accuracy of calculation should be tested by the agreement of both
sides of Eg.(l.24){1.25] for any wvalue of z at any point (E.n).

[x} Wave height distribution and wave forces to breakwater

Wave profiles tr and Lpp AT any point in outer and inner regions are
given by following eguations.

E, = itniltx,r,sﬁe_i”t i B

; -iot
Gy - 1cu!2{x.y.zic s (1.48)

II

and the ratiocs of wawve height in both regions to incident wawve height

{2)

1) and Kd

Hr.'l are calculated as follows:

I
xé ]=|fﬂ¢x,y]+f

NI R AL PR I S R AL R PR RO LT
n=1

L 5=1

wWave forces Fy and F,_ to breakwater in positive x and y directions are
calculated as follows:

is!
F " : I 0w (3l
_*I=_i iat%ilﬂ%&i& T —.—zumn_ {L.50]
patgh s=1 j=Liy (%) i
Fy _ j -iet ofn (leiww/o? o {1.51)
] 0] g1 jil z b :
pggh Ag!

II Analysis for Impermesble Breakwater

For impermeable breakwater, the scattering terms Ién?:x,yr in BEg.(l.2)
vanish identically and wave function ﬁl{x,y,z} becomes simple as follows:

-Illzush. kiz+h} (2.1

QL
- 9
mliR:Friﬁ = [fﬂﬁx.yl + Lyl cosh kh

On the boundary D, fluid welocity normal to D should vanish, so that

# lE.m. ) fdv = 0 and S0 af) (E.n}fav = =3f, (E.n) 3 (2.2)

Substituting this relation into Egq.(1.14)}, we have next integral

i
!
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eguation to determine £ (£,n)

1 ]

W ikryas = —_L[ s M kR E e onids (2.3)

i1
gtet o+ for €amdse-gad Hy

i from which, E1 is determined by the following linear eguations.
& H . H N &
fltl: + jElaijfl[j] - - jzlhijfatjj FIR 15 s A fRee LI (2.4)
And the first eguation in Eg. (1.33), flix,yﬁ and hence ql[x,y,z} are
determined.

Distribution of wave height ratics and wave forces to breakwater are
caloulated by the following egquations.

= |, lx¥} + £, (=,¥) ] {2.5)
F a3 N
| X_ - _jgidt % _lg Il laay) 4 £ Gy D han
| pgi, - h Ag” d=1 J
[2.8)
F st N
— X = o710 U_E_*}_ _13. E [fgle,y) + £ 0oyl kg,
gqtﬁh kn J=1

ITI MWumerical calculation

Here, breakwaters of elliptic and rectangular shape, where x and ¥ radil
are 2a and 2b, and x-side and y-side are 2a and Zb, respectively, caleulate
the case when asb=0.2, b/h=2.5, for wave Of azhjq-D.E, kh=0.772(kb=1.83) .

In general, it is deesired to make distance ﬁsj betwesn successive cal-
culation points in the boundary be shorter than about one eighth of wave
length. ‘Hence, in these caleculations, twenty claculation points are distri-
buted along the boundary as shown in Fig.2 where the largest distance be-
Eween successive points is abowt 0.13L(L:wave length).

(il Conwergence of the series

a8 an example, taking n* =3,s*=4, the numerical wvalues of £,(3}, ftn?tjh
and f{Hjﬁll at every calculatien points are shown in Table=1 far elliptic
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breakwater of ¥We0.5, pV/ /o=1.0 for wawve of uzhjg-a.S, w=0". (For the case of
w=0", values at symmetrical points with respect to x axis are the same, S0
that, valuea at j=11%19 are the same as those at =179, respectively.)

From the results, it is found that the convergence of the series dis-
cussed in IL({viil is satisfactory and n*=3,s*=4 are sufficient for practical

caleulation of this case.
{ii) Exactness of calculaticn

The exactness of calculation are determined numerically by testing how
accurately the continuity conditions Eg.{l.24) and ([1.25} are satisfied.
Table-? showys the numerical comparisons of bath sides of Eq-(1.24} and(l.25)

at depth of z/bh= 0.-0.2,-0.4,..., -1.0 at point j=10 andl5 in above case.
From the results, it is found that the exactness of calculation is sufficient.

[iii} Wave height distribution

Fig.3wé are calculated wave height distributions by Eq.{l.49%) for perme-
able breakwater with v=0.5, u¥/o =1.0 and by Eg.i2.5) for impermeable breask-
water, where the former are shown by broken curves and latter by full curves.

Fig. 710 are those for the case when b/h=2.5(kb=1.%3), a/b=0.5, Uzhfg=
0.5({kh=0.772]1 and ¥=0.3, u¥fo=1.0.

From these distributicns, it can be seen that:

{al The differences between rectangular and elliptic breakwater arise fram
the apexes of rectangle and elearly appear for w=0" and almost disappear

for w=90%,

{b) The longer becocmes the breakwater, the more clearly appears the standing
wave in front of breakwater, for «=0" in case of b/h=1.0, the standing wave
almast disappears.

{z] The wave height in front of permeable breakwater is always smaller than
that of impermeable one. And wave height behind permeable breakwater is
semallear than the one behind impermeable breakwater for the case aof short
breakwater but is adverse for the case of long breakwater. This ils due to
fact that for ashort breakwater, waves behind it are mainly diffracted waves
and behind permeable breakwater they are smaller than those behind impermeable
ana, and for long breakwater, waves behind permeable ane aremainly transmitted
waves through breakwater but those behind impermeable one are malnly diffract-
ed waves and become amaller for longer breakwater.




WAVE SCATTERING 1899

{iv} Wave Forces
calculated wave forces by (1.50),({1.51) and(2.6)] are as shown in Table-3.

[v} Comparisons with experimente

For comparisons of apalysis with experiments, rectangular and elliptic
breakwater models are placed in wave channel of length 25m, width lm and
depth 0.6m with flap-type wave generator as shown in Fig.1l.

Impermeable models are made of concrete and permeable models are of wire
screen filled by small concrete blocks, of which the average woid is 0.40,
and b/h=1.0, a/b=0.5. The water depth is 20cm, wave pericd is kept constant
as 1.2B s¢¢,{02hfg=u.53

Considering the effect of reflection by channel walls, wawve height dis-
tributions are calculated, taking V¥=0.50, w/d=3.0, for the boundary conditions
as shown in fig.1l1, that is, at imaginary boundary W, and W, far from break-
water waves progess from right to left witheout reflection waves and at
channal walls Hl and Ngf normal welocity of fluid motion wanishes.

And under the same conditions, wave heighte are measured. The results of
caleulations and experiments are shown in Fig, 12%15, where left and right
parts are by calculations and experiments, respectively. From these figures,
it is found that results of calculation agree fairly well with thase of
experiments.

Iv Concluaicns

In above calculations, wa assumed Va=0.5, u/o=2.0 and found that theory
and experiments are in good argument. In this analysis V and WU/ 0 are inter-
pretted as virtual guantities related to woid and fluid resistance of break-
water. Hence they are not necessarily the same as the actual walues, but
are to be selected so as to obtain agreement of thaory and experiments.

The method of analysis described in this paper can be applied to the cal-
culations not only for elliptical and rectangular shapes but also for arbi-
trary shapes. And the same principle is avaiable to the analysis of parmeable
quay wall, and alse of fixed semi-immersed, of submerged cylinders.
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Tablae 1
{m) (8} 2
Successive values of 'l' f2 , and 13 for o h/g=0.5
b ] El fz{ll fziz} fz[ﬁi
20[-0.5171 -0.19111 0.0105 +0.01681 [-0.0376 +0.01911 -0.0002 -0.00011
1|-0.3172 -0.04381 0.0066 +0.0171i |-0.0027 +0.0043d =0.0010 +0.00063
2(-0.2138 +0.0105i =0.0230 -0.0074i 0.0007 +0.0049i 0.0010 +0.0020i
3/-0.0780 -0.01374 =-0.0127 =0.0010i 0.0018 +0.00374 0.0012 +0.00174
4|=0.0101 -0.03171 =0.1112 =0.00121 0.001E +0.0029i 0.0011 +0.0014%
5| 0.0504 -0.0589% -0.0123 -0.00321 0.0016 +0.00271 D.0011 +0.00124
6 0.1107 -0.0934i -0.0166 -0.0069i 0.0015 +0.0032i 0D.0013 +0.0013i
7| 0.1550 -0.1113i -0.0259 -0.0146i 0.0009 +0.00441 D.0016 +0.00134%
B| 0.2485 =0.1B2Bi -0.0974 -0.07104i |-0.0150 +0.01231 0.0028 +0.0011%1
9| 0.3379 -0.2024i 0.0195 +0.01551i |-0.0161 +0.01274 0.0029 =D.00054
10| 0.4492 -0.2315i 0.0357 +0.00034 0.0094 -0.00421 0.0060 -0.00444%
b Ilil! E3H2] EJIJI f314l
20] 0.1560 -0.02871 0.0022 -0.0157i |-0.0060 +0.0101i =0.0004 =-0.0017i
1| 0.2331 -0.0647i =0.0029 -0.02274i |=-0.0021 =-0.0042i =0,0012 -0.00221
2| 0.2640 -0.0971i -0,0203 -0.02474 |=0.0020 =-0.00501 =-0,0008 -0,.00241
3| 0.2834 -0.16051 =0.0233 =-0.02734 |=0.0038 =-0.0060i =0,0016 -0.00271
4| 0.2917 -0.1939i -0.0267 -0.02854 |-0.0049 =-0.00631 -0.0021 -0,0028i1
5| 0.2937 =-0.2299i -0.0315 -0.02B6% |-0.0059 <0.00621 =0.0025 -0.00281
6| 0.2927 =0.26771 =0.0377 =-0.0282i |-0.0068 -0.0058i =0.0029 -0.0027i
7| 0.2916 -0.29481 =0.0450 -0.0275%i |-0.0073 -0.0050% =0.0031 =0.0026i
B| 0.2821 -0.36l0i =0.0848 -0.02231 |-0.0108 +0.0026i -0.0034 -0.00231
9 0.2825 -0.39981 =0.0377 =0.02961 |-0.0122 +0.0013i -0.0043 -D.00331
10( 0.2775 -0.4542i | =0.0431 =0.03661 |=0.0117 =0.00%01 | =0,0037 -0,00491
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Table 2

Numerical check on the boundary conditions

(i) Continuity of fluid pressure

| j| z/h Region I Region II

10y 0.0| 0.3821 +0.22981 0.3755 +0,23171
=-0.2| 0.3716 +0.1859i 0.3738 +0.18231i
-0.41 0.3795 +0.1442i 0.3786 +0.14641
-0.6; 0.3542 +0.12641i 0.3525 +0.12611
-0.8| 0.2944 +0.1348i 0.2950 +0.13381
-1.0) 0.2637 +0.14321 0.2628 +0.1447i

15| 0.0} 1.0487 -0.05821 1.0421 -0.02821
-0.2| 0.9485 -0.05621i 0.9479 -0.0559i
-0.4| 0.8825 -0.05521 0.8828 -0.04831
-0.6| 0.8428 -0.04691i 0.8428 -0.0477i
-0.8| 0.8209 -0.0415i| 0.8207 -0.0443i
-1.0| 0.8131 -0.0402i| 0.8134 -0.0360i
(ii) Continuity of fluid velocity

10| 0.0|-0.0746 +0.0076i; -0.0750 +0.0052i
-0.2|-0.0362 +0.0688i| -0.0362 +0.06701
-0.4|-0.0154 +0.2579i| -0.0153 +0.25751i
-0.6|-0.1214 +0.5515i( -0.1214 +0.55151
-0.8|{-0.3093 +0.8383i| -0.3094 +0.83861
-1.0|-0.4047 +0.9596i| -0.4047 +0.95921i

15} 0.0( 0.0415 -0.03591 0.0428 -0.03491
-0.2| 0.0630 +0.00201 0.0625 +0.00181
-0.4| 0.0725 +0.0372i 0.0748 +0.03731
-0.6| 0.0326 +0.02001 0.0326 +0.01991
-0.8} 0.0087 +0.01041i 0.0085 +0.01041
-1.0] 0.0112 +0.017741 0.0115 +0.01771
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Table 3
Calculated Results for Wave Forces

Shape Ellipse Rectangle Remarks

Cross-sec—

tion Area nab S

Angle 2w | 0° | 45° [ 90° | o° [ 45° | 90°

o“h/g = 0.5 , kb = 1.93
9.146(5.374|0.0 9.641|5.447|0.0 Imperm.
aéb; 1.208|2.427|0.0 |4.802|2.561(0.0 Perm.
- 2
—*— |a/b=|8.562|5.074|0.0 [9.184/5.564|0.0 Imperm.
pgz_h 0.5|6.184|3.626|0.0 |6.956|3.784|0.0 Perm.

- a/b=(0.0 1.371/1.508|0.0 1.644(1.417| Imperm.
W 0.2(0.0 1.280]1.411(0.0 1.736]1.604| Perm. !
oo ne |a/b=[0.0 3.210]3.673]/0.0 3.973]/3.466| Imperm. 3
[s 0.5(0.0 2.89413.273(0.0 3.433(3.403| Perm.
Gzhfg =1.0 , kb = 3.00 i
. a/b=|6.431|2.773|0.0 6.774[2.534|0.0 Imperm. j
X _0.2)4.033]1.595]0.0 4.546(1.400(0.0 Parm. {
hf a/b=[6.571[2.418[0.0 6.952|2.175|0.0 Imperm. |
P o 0.5/5.023[1.821[0.0 |5.651[1.247]|0.0 Perm. |
F a/b= 1.148|0.687]|0. 1.12210.479| Imperm.
¥ 0.2 1.103[0.404| Perm.

2.752[2.893| Imperm.
2.117]1.948] Perm.

0 0
0 1.002)0.552]0
1] 2.560)1.79710
0 2.08211.412]0

|
|
|
{
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