CHAPTER 156

'\ METHOD OF AMALYSES FOR TWO-DIMENSIONAL WATER WAVE PROBLEMS

by
Takeshi IJIMA®, Chung Ren CHOU** and Akinori YOSHIDA®*

2bstract

. ne of the most powerful tools to analyze the boundary-value problems
water wave motion is the Green's function. However, to derive the

'g function which satisfies the imposed boundary conditions is some-

g difficult or impossible, especially in variable water depth. In

3 paper, a simple method of mumerical analyses for two-dimensicnal

2 alue problems of small amplitude waves is proposed, and the

5 transformtmn by fixed horizontal cylinders as an example of fixed

mdaries, the wave transformation by and the motion of a cylinder float-—

on water surface as example of oscillating bounflaries and the wawve

nsformation by permeable seawall and brealwater as example of permeable

daries are calculated and compared with experimental results.
Introduction

The author (1971) has imvestigated the problem of wave transformation

permeable breakwater and seawall with vertical faces by the method of

Eirmation of velosity potentials. Sollitt(1972) has alsc calculated

the same problem by the similar method to the author’s and recently Madsen

ind White (1576) have investigated the problem with long wave assumption.

:-.'+ 4 problem can be analyzed theoreticall when the structure is of ver-

: faces, but as for the sloped-faces, it is possible only to estimate

Uhder several comentional asf_qrrq:rt:i.o‘n-s,

The problem on wave transformation by and the motion of floating rect-

body in constant finite water depth area has been analyzed by one

the authors(1972) by the method of continuation of velocity potentials.

AICh a problem for floating cylinder with arbitrary cross-section shall be

Bolved by means of Green's function, being derived by John(l1950). However,

pProcess is rather complicated and can not be applied to the case
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of variable water depth.

The proposed method in this paper is not to use Green's function but
to use logarithmic function of the distance between the point on the
boundary and the inner point of fluid region, according to Green's theoren,
By means of our method, above-described problems concerning to the sloped-
face permeable structures, the floating body in variable water depth ares
and so on are easily formulated and numerically analyzed. In the follow-
ings, the formalations and numerical evaluations for small amplitude waves
are described and compared with experimental results.

II Green's Theorem and Identity Formala
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‘PEA,EJ=‘i— {E,J'EP{_;J E,L,?{JJJ (2.3)

J=
Pliy = £f_-: Plir— Euiffj;} 2.4)

iz

PUI=H5.0),  F0=29E0twh) @9

s T r,, = -
E; Lf'zi » Ex fawwz’f he
E=LJ R!. das "". B f d}
LJ ?': .I‘]SJ Cﬂ?(_# hi ’ l e '; a{ufmj

Ajr Ex; ,andE.,J,t.,J aremtegrabedvaluesmerthwthelmt

We assume that a potential function < (x,z) is defined in a closed (2.6)
domain enclosed by a curve D in (x,z) plane as shown in Fig.2-1. Indi-
cating the point on the boundary curve D by (E,7), the outward normal
by y , the distance betwesn the point (§,{ ) and a point (x,z) in the
domain by r, that is, ‘I"',HE‘I._}‘TE'I-ZJ* , and the constant refer-
ence length to the gecmetrical size of the domain by h, , it follows by
Green's theorem that the potential wvalue at point (x,2z) is provided by
the potential values ¢b(§,7 ) and its normal derivatives 3¢ (§,7 )/

2V / he on the boundary curve as follows:

are calculated mumerically as follows:

(2.7)

hers EI';,J is the subtending angle of the point 1=t_.{ Z,) to the j-th

lement, and

f Alg(vh _ 29052 ds
'-‘ibr_x.ij:-.-ﬁ._—ﬁ‘?fg‘,?} ;ﬁ,h; - awmjf“}(vﬂ*ﬂ he e
D

Ry=Jg-£0+-0),  8Si=/(85)+ (ayy
AL =3 (Sm—5), AL=F(4n-T)

i E,‘_I are calculated, replacing the point i = (£;,7;) by X = (x,2)
E‘:l (2.7).

b Bg.(2.1) or {2.3), the Green's thecrem, states that the potential func—
0N at any point in the domain is determined by its boundary-values and

g al derivatives. In other words, to solve i boundary-value problem is

3 valent to determine the boundary-values and its normal derivatives of

& interested potential function.

b E9.(2.2) or (2.4), the Green's identity formula, states that the bound-
alues  b(E .2 ) and its normal derivatives '5"'; (€.7) are in linear

If the point (x,z) lies on the boundary at (E47'), Bg.(2.1) leads
to the Green's identity formula as follows:

! d lo3(Rina) _ 39(5.2) ds
#er)—% [ [Henie8h)_24EY 4 (pp jds e

R e

In Bg.(2.1) and (2.2), the integration denotes the line integral along
the curve D. Then, dividing the boundary curve into N small elements by N
points and indicating the length and the central peint of the j-th element
as ﬂSj and (E; +7; )+ as shown by Fig.2-2, Bg.(2.1) and (2.2) are approx
imated by the following sumation equations, respectively.
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relationships which are defired by the gecmetrical shape of the domain.
This is the first set of relaticns betwesn ¢ and < on the boundary.
Therefore, if another set of relatisns between ¢ and ¢ is provided,
it follews that they should be determined by solvirg the two set of rela-
tions, simaltanecusly. &nd, in our problems, this second relation is
given by dynamical or kinematical boundary ronditions on the boundaries
of the interested domain.

ITT Wawve Transformation by Fixed Cylinder

Bs an example of fixed boundaries, we consider the wave transmission
through and wave forees to the semi-immersed cylinder with arbitrary
cross-section in variable water depth area. In Fig.3-1, the origin O of
the coordinate system is at still water surface, x- ard z- axis are hori-
zemtal and wvertically upwards, respectively. We assume that (DC' is a
fixed cylinder at variable depth area, whers the depth at sufficiently
distant from the eylindsr is constant h to the right and constant h' to
the left and that the incident wave of frequency o~ and amplitude 5. comes
from the right. We take the gecmetrical boundaries AB and A'B' at x= £
and - £, where the depths are h and h', respectively, and divide the
fluid region into three parts (0}, (I} and (0') as shown in the figure.

The fluid motion is assumed to have wvelocity potential with potential
function < (x,2z) as shown by Bg.(3.1).

F(rI:t) = %:P[l”ei.ﬂ: -

where g is gravity acceleration and t is time. The potential functions

. in region (0),(I) and (0') are deroted by #(x,2), <(x,2) and 2w, 2),

respectively. Then, since regicn (O] arnd {0') are of constant depth and sO
far from the cylinder that the secattering waves are damped to be vanished,
the potential functions for them are expressed simply by Bq.(3.2) and (3.3}
without scattering temms.

ﬁ[lj) - {eiml—i}_‘_ v e—éml-ﬂi}j AlkZ) (3.2)
¢ i) = q:‘e'mr“"”’- A(R'Z) (3.3)
In Eq.(3.2), the first term iz for the incident wave and the second

term is for reflected wave with complex reflection coefficient ¢ . Ed.
(3.3) is for transmitted wave with complex transmission coefficient @ .
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The functions A(kz) and A(k'z) are given by BEg.(3.4) with wave mmbers k
and k' for region (0) and ('), which are determined by Eq.(3.5). The

:'3.6}.
_ weah R(Z+h) F 0%
Alkz) = v Y A[hzjzm_i_rgﬁ _—
o*h Y, it o
khtmihh=—?— khtaﬂ{kh=? (3.5)
Kr =[] Ke = |¢'| (3.6)

How, we consider the dynamical or kirnematical conditicns on the
mdaries of fluid region (I). '

On the free surface AC, C'A' at z = 0, we have Bg.(3.7).

9 _ 2y Z._92¢ v

= or ¢'= = where [ = i

9z ¢ A V/he) ks 5 # iak.
and hy is taken as the distance between point A and B'.

1 On the immersed surface of fixed cylinder CDC' and on bottom EB',
we have Eg.(3.8) because of the impervious boundaries.

2y J{Hfm} =

{3.8)

} IrFd'.n.';\lljf, an the gegmetrical boundaries AB (x = £ ) and A'B" (x =
= £ ), we have from Bg. (3.2) and (3.3)

%=(1+9)ARD ,  F=ho 3= holi-¢)ABD  (3.9)

K .r . & '
d'= LARY) ﬂ=-h,%%.= ~iAWA(RT) (310
!

here A ,= hhe re=R'h (3.11)
1 As shewm in Fig.3-2, we divide the boundaries AC, CDC', C'A' and BR'
S Ny , N2 . N3 and Ny elements, respectively and geometrical bound-
= BB, A'B" into M and M' elements, and denote the potential funct-
S o

: thanby For ooy sy oand b, @', respectively. Then,
tuting the relations (3.7) ~ (3.10) into the Gresn's identity
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formala (2.4) for the fluid region (I}, the following simultanecus linear
equations with respect to the potential functions on the boundaries and
coefficients ¢ and q; are provided:

[ot i . .
- P + i{EJ [E;)4 + Z:’:'u‘?fﬂ + Z‘[E E;) %) I’EF;{M =te 2 H0i)- Eé— (3.18)
=t .J='1' _
— o ’ . T S ’ : L
+jZE¢Jﬁ{”+ ‘f’;ﬂ'irﬁ{ﬂrﬂ' ?”S;Gssﬂ(ﬁ&} f—;f':ff: =(e ,:Z;( E‘f-%+ ’3‘* G-z A )qb{ (3.19)

The first calculated example is a semi-immersed circular cylinder
= Z;G“ A(RZy) B whose center is fiwed at still water surface on constant water depth area
= \and whose dismeter D is 0.8 times the water depth h. The geometrical
surface AE and A'B" are taken at x = 3h and - 3h, respectively. The
marbers of calculation points on the boundaries are'taken as Ny= 20, N,=
14, N,= 20, Hg= 30 and M = M' = 20. The second example is double cylin-
s whose diameters are the same as zbove and whose centers are apart by
e times the diameter D.

wherea
G’LT:ET"'U-GELT: G;vg:E;ng:Egg, G;=Ef—iﬂnE£r (3.13)

In above equations, the first term <F(i) should be written as
follows, according to the position of point (i):

B S Lol SALSEOE ¥ PSR T Sniih Fig.3-3 shows the calculated and measured transmission coefficients

i=1~%, ¢ -=<f§{j] 1 i=1~1Ng, C,‘f*'[.i.] =¢4{i]"' with respect to the non~dimensional frequency #*h/g or to the ratio of
(3.14) diameter to wave length D/L for the first and second examples, where the

For point (i) on AB and A'B', putting i= ( £, z,) = (p), i= (- £' z) felid line and open circles are for single cylinder and the broken line
= (g}, we take d solid circles are for double cylinders. From the figure, it is seen
: % ; at the transmission coefficient for single cylinder decreases gradually

P=(1+9)AkZ),  PO)=YA(RT) (3.15) B e fr Al cplinders 3 it 7 v ol

and that the measured values are scmewhat leser than the calculated
Eq. (3.12) yields (Nj+ Ny+ Ny+ Mg+ 2) linear eguations with respect es for higher frequencies but the tendencies of both are in good
to the same mmber of unknown quantities. Solving these equations, all eement.  The discrepancies between measured and caloulated values are
of the unknowns are determined and by means of Bg.(2.3), the potential Ehought to be due to the non-linear effect of measured waves. (The expe-
funetion at any point in fluid region is calculated, and at the same ‘Biments were carried cut in wave flume of length 22 m with water depth
time those of regions (0) amd (0') are cbtained by Bg. (3.2) and (3.3). 8L = 40 am and incident wave amplitude § = 3 -4 an.)
The fluid pressure at point (j) = (£,2;) on the immersed surface of r
the cylinder is given as
_PG) _ (3.16)
=—ifl ’
P35, 7 Het”
Consequently, the horizontal and vertical resultant forces Py and Pg
and the resultant moment T around the point (%,,2,) are calculated as
follows:

Wave Transformation by and the Motion of Floating Cylinder

1 In Fig.4-1, it is assumed that a cylinder of cross-section CDD'C' with
Gravity center at (¥,,Z,) and center of bouyancy at (x,,z,) in equilibrium
ondition is moored by spring lines DE and D'E' with spring constant ¥ on
2 variable sea bottom B'E'EB, and is subjected to the incident wave of

¢ and small amplitude &, from the right. Then, the position of
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M ,
ﬁ% ==igh* ZI' fﬁfj.‘lr% (2.17)
J:
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the gravity center of the cylinder (¥5.2. ) and the rotation angle & of
the cylinder arcund gravity center at amy time t in motion are expressed
by the complex amplitude of horizontal and vertical displacements X, Z
and of the rotation angle (@ as follows:

- Fige ™, o ey

Yom Tt KEH b=@e

Similarly to the previous section III, the velocity potential is exp-
pressed by Eq. (3.1} and the potential function in region (0), (0') are by
Eq. (3.2}, (3.3) with reflection and transmission coefficients {IP and qJ’ .
fnd also, the potential function at free surface and at bottan in fluid
region (I) are in the relation of Bg.(3.7) and (3.8), respactively.
However, on the cscillating surface CDD'C', the nommal derivatives of
the potential function ¢ is given by the following expression, due to
the kirematical boundary condition:

s _.r[Xdz_Zdr_@d{x-Xdx  Z-ZodZ
=2 ‘rlg a5 T.ds Sp{a 57 ds}] (4.2)

where (1 is a reference lergth to the horizental size of the cross-
section, for example, 4 is taken as half width for rectargular cylinder
and a5 radius for circular cylinder. (x,z) is the coordinate of point
on the surface COD'C' and s is the length measured along CDD'C'.

The complex amplitudes X, 2 and @ in Eg.{4.2) can be expressed by
the potential function ¢f, on the immersed surface of cylinder, taking
account of the following equations of motion of the cylinder:

i:_zu—?x‘l":x, MiE:H?I+E+Fi

(4.3}
Ia%{= Te+Ts + Mo

where M is the mass of the cylinder; Ig is the moment of inertia arcund
the gravity center; Py , Pz , Tg are the resultant horizontal and vertical
fluid forces and moment around gravity center due to the fluid pressure
acting to the immersed surface; Pg , Tg are the restoring foroce and moment
for vertical displacement and rotation of cylinder due to statical fluid
pressure; Fy, Fp, Mgare the mooring forces and moment by the moorind
lines induced by the motion of the cylinder.

Indicating the fluid density by § , the draught in mocring conditicn

TWO-DIMENSIONAL ANALYSES

s gh (1rqg70), the mass M, the mament of inertia Ig and the immersed
me of the cylinder V are expressed with positive constants W, , Vs

M=vfaqh, Le=wfa’(qh)’, T=Vsdgh .0
gince the fluid pressure on the immersed surface is expressed by Eg.
{3.16)

P =-irgs,e’t| dondz
-]

F, , Pgand Tgars given as follows:

P A

P irgs,e” | aendz .5

To=ir35,et [{ntdit z-Tydz 4um
5

- e integrations are taken along the surface CDD'C'.
penoting the length of water line as EE,,PSaMTSareqivmas

;rf.’

R=-2r30, 2", Ti=-p47{5 & L g-njee”t we
For simplicity, we asmume that the cross-section of the cylinder and
the mooring condition are symmetrical with respect to the vertical line
ough the gravity center. Taking the angle of mooring line with hori-
zortal as B and the mooring point on the cylinder as { o, ba) and

{ =, b ), the mooring forces and moment to the cylinder Fy , Fz and
__; are expressed as follows:

F=-2K(X-S8)usBe™, [,=-ZKsinpe'ot

Mg = 2K5(X-58)cos’pe ™

(4.7}

S = by-Z.= (G=X,) tanp

| Substituting Eq. (4.1} (4.4) (4.5 (4.6) and (4.7) into Bg. (4.3), it
follows that X, 2 and (B are expressed by b (x,2) .

- o

J"_u .-:11 {LH

—-afj } (4.8)
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: iiﬁn,z}‘% 459

Z
Se
o dX T
%=—J‘EHZJ At Kl +(-i ?az -km}%} (4.10)
wheres

= ot,oks— ks ot =hu-v 2 T,
dr= Rz — 1}1% Plsk gﬂ, ol3= Rog— J{WP
{Ea) v, 2h E,{LZb ; b= 2K 24 msﬁ {4.11)
ZRs! 2KS e
kﬂ=ﬁ—s¢nﬁ Rao=ga7 COSP. Rxo =257 5B

Introducing Eg. (4.8) (4.9) (4.10) into BEg.({4.2), #-'*z_on the immersed
surface of cylinder is written by <b;, as follows:

% (2= ["J ﬁ{u,u}»}?{x,zn W0, {4,12)
5
where
Fﬁxzuu}:[{uf—z ol U=X, ¢ XL i—é (;hﬂ 2 E2).

+ L,
-To AT u i
1__.3_ T[

+

; E ) ke -ﬁ (-

dds

Ruo—Z328) ~(frygot, Z; El u.sz 4t (4.13)

where (x,2) and (u,v) are the coordinates of the points on the immersed
surfape, Indicating the calculation points on the surface as f§J- . E_; ]

and (£, i), corresponding to (x,2} and (u,v), Bg.(4.12) is written
as follows:

pa
A1) = r_’z Ffj,mj- <, (m) (4.14)
m=1
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Similarly to the preceding section ITI, applying BEg. (3.7)(3.8) (3.9)
(3.10) and (4.14) to the Green's identity formula {2.4) for the fluid
regicn (I}, we have linear simultanecus equaticns with respect to the
potential functions € on the boundaries and w , '. They are witten

My A p2 _
by replacing the term Z;Eu'ﬁfji in By. (3.12) by Z E}LEJRE:_F
a- M= J=

- I’E&j F{j’,'m}]?ltm] swhere § is Kronecker's delta and SJ',;= o

(j#m:=1 (j=m.

Solving the equations, we can cbtain all of the boundary-values of
potential function of region (I} and the transmission-, reflecticn coeff-
icient, similarly to the section ITI. Then, the amplitudes of motion of
cylinder are calculated by Bg. (4.8) (4.9) (4.10) and &lso the mooring foree
F to the wave-side mooring line DE is caloulated as follows:

_F_[x

= tan fb - ]mﬁ gt (4.15)

The mocring force F' to the lee-side lire D'E' is given by replacing
f by -{ in above expression.

As an example, we consider the cass when a circular ovlinder is moored
on ccmstant water depth h. The diameter D = 2a is 0.914h, the draught is
0.6%h (g=0.67), the mocring points on the cylinder are ( + 0.486h, - 0.114h)
and ), = 1.467, .= 0,670, v, = 1.646. The cylinder is of uniform density
0.584 and the center is at 0.114h below still water surface. The spring
constant K/fga is 0.227 and mooring angle f is 33°. Fig.4-2 is the cal-
culated (solid line) and measured (open circles) transmission coefficients
With respect to the nondimensional frequency or to the ratio of diameter
‘to the wave length D/L. Experiments were carried cut in wave flume with
water depth h = 35 cm and a ciroular oylinder of diameter D = 32 cm, whose
center was at depth 4.0 om below still water level in equilibrium condition.
‘The figure shows that the caleulated and measured values are in good agroe-—
ment. Moreover, it shows an interesting fact that the incident wave is
Perfectly intercepted even by floating cylinder, if the frequency s h/g is
' 0.42 and 1,74, that is, D/L is 0.10 and 0.26. Fig.d-3 is the calrulated
reflection coefficient and amplitudes of motion of cylinder,
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V Wave Transformation by Permeable Seawall and Brealkwater

In Fig.5-1, suppose that ABC is a permeable seawall placed on impsr-
vious bottom BOO'., The geometrical boundary is taken at 00', which is
sufficiently distant frem the seawall and of constant water depth h.
Dividing the fluid region into three regions (), (I) and (II}, the velo—
city potentials in region (0 and (I) are assumed to be expressed in the
form of Bg.(3.1) with potential functiens <b,(x,z) and ¢P(x,z), respecti-
vely., In permeable region (II), indieating the guantities by superscri-
pt * , the mass and momentum equations are written with horizental and
vertical fluid velocities u*, w* and fluid pressure p* as follows:

L,

—1‘+ ﬁ:ﬂ

I ap* w_ E(1-T) 2u”
,%,.Bﬁ Fg& {ri“ ¥ of (5.1)
taw_  foap* o M .ox e(1-V) aw*
vaE=-F4r- -5 50

where _f' is the fluid density, V is porosity of the seawall, I!‘J. iz the
ccefficient of drag force to the porous material which is linearized to
be proportional to the fluid welocity and £ is the added mass force
coefficient to the material. The fluid motion represented by BEg. (5.1)
has velocity potential, which is expressed by Eg. (5.2) with potential
function cfa* , and fluid welocities, pressure and surface profile are
provided by Bag. (5.3).

F(xzit)= iﬂ%#’*fx,zjeéﬂ (5.2)

w=ax, w*=2805%, prsys, =-ip¢l e

{5.3)
t

5/5,=-ipdr0e™, p= 2= EU-T)+i Y
The potential function < in region (0} is given by Bg.(3.2), so
that the boundary cx:u'l.dlta.ons of fluid region (I} are provided by Ege(3.7)
ontm by Eq.(3.8) on O’ and by Eq.(3.9) an 0'0. As for the conditions
de:' since the mass flux and energy flux through the boundary AC should
be contimuous, it follows from Eg. (3.16) and (5.3) that
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=%, +=La (5.4

e
As for the porous region {IT), we have Bg.(5.5) on free surface 2B
from the kinematical condition, and Eg. (5.6) on impervicus boundary BC.

ﬁf:cﬂ%fcp* or P =[P, T’=¢§E" (5.5
33_"1;2 o or  PT=0 (5.5)

As shown in Fig.5-2, denoting the potential functions on the bounda-
ries OA, IC, 00' and DO by 9, , by, P, , P and on the boundaries BA,
#Fad By P*, H*and %, dividing these boundaries into N, Nz,
Nz, M and N¥ , Nz, N*% and taking the outward momal for region (I} and
irward nommal for region (II), and applying the boundary conditions (3.7)
{3.8) (3.9) to the Green's identity formuola (2.4) for region (I} and
conditions (5.4) (5.5) and (5.6} to Bg.(2.4) for region (IT}, we hawve the

following equations:

{i) For fluid region (I):
-'ﬂP“HZ’I{&l 7Ey)dti)+ th‘,'ﬁfﬂ E %]
+ Z'ELJ {JJ‘I'LPZ' G, AlkZ) = ZG”MF?EJ {5.7)

r=i LA}
f1=l"‘-”N“ 1~ Mg 1~ M3 and (0, Z2p) on 0'0}

{ii) Por porms region (II}:

li)+ Z’Ltb‘,wra )46 + Z[ E;:#a,fi)

o=l
- E ]+ Z ES4 =0 (5.8)

(i=1~mN¢,1~Nz,1~N)

Bq.(5.7},(5.8) are ( Hy + 2 N.+ N3+ NY + N4 + 1) linear equaticns
ﬁthmpectMHEsmnmbermfmﬂmAhsdﬁicp“%; Froe o >
and Sh* . Consequently, solving these equations similtaneously, we can
determine all of the unknowns, from which the potential values at points
in fluid region are caleulated by Bg. (2.3).
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The surface wave profiles are caloulated as follows: References
L : ~ ek :
From® H i) = » = 1~ N* E . )
e SEps=tgn e g : (5.9} Tjima,T., Y.Eguchi and A.Kobayashi (1971) :" Permeable Breakwater and Sea-
' - Wall ", Proc. 18th
Fram A to O S = —i ipert g = » Proc Japanese Conf, Coasta. Bng. J.5.C.E.

Ijima,T., ¥.Tabuchi and ¥Y.Yumra(l972):" Scattering of Surface Waves and
the Motion of Rectangular Body in Wawes of Finite Water Depth”,
Prog, J.5.C.E., No.202 s

John, F. (1950] : " On the Motion of Floating Bodies, IT", Comm. Pure and
Applies Mathematies, Vol.IIT

Madsen, 0.5, and 5.M.White(1976) :" Reflection and Transmission Character—
istics of Porous Rubble-Mound Breakwatser ", Miscellansous
Rept. No.76=5, Coast. Eng. Res. Center, U.S.Army, Corp. of Eng.
Sollitt,C.K. (1972) ;" Wave Transmission throwgh Permeable Breakwater ",
Proc. 13th Internatinal Conf. Coast. Eng. A.S.C.E.

Fig.5-3 and 5-4 are the caleulated and measured reflection coefficients
with respect to non-dimensional frequency ¢f h/g for model seawall of 1:1
slope and of vertical face, respectively, made by quarry stones of mean
diameter 6 cm with porosity v = 0.43 in constant water depth h = 40 an.

The widths of both seawalls at still water lewvel are equal to twice the
water depth h. The selid lines in figures are calculated values, taking
V=05 M =1.0ad £ =0 for all frequencies. The measured and
caloulated values are almost in good agreement.

Wave transformation by permeshble breakwater is analyzed in the similar
marner. In Fig.5-5, sclid line, solid circles and hroken line, sclid tri-
angles are the caleulated and measured reflection and transmission coeffici-
ents, respectively, for model permesble breakwater with 1:1.5 sloped faces
and the width at still water lewel h. Other conditions are the same as the
seawall. The calculated values are somewhat different from measured values
but the tendencies are nearly in agreement. Fig.5-6 is for permeable break-
water model with rectangular cross-secticn of width Zh. The measured and
caloulated values are in good agreement.

Fig.5-7 is the caloulated distribution of equi-potential lines (solid
lines) and its orthogonals (broken lines) for permeable breskwster in Fig.
5-5 at @t= 0", 307, 60° and 90", when the incident wave crest spproaches
to the breakwater.

VI Conclusions

Tt is clear that the proposed method provides a convenient and simple
analysis for two-dimensicnal boundary-value problems of amall amplitude
waves. Ind, if the difficulties arising in solving simultanecus equaticns
of so mary unknown quentities were overcome, this method is extented direct=
ly to the problem of three-dimensicnal waves and also to the finite ampl itude
wave problems by means of perturbatien method.
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Fig. 3-1 Definition Sketch for Fixed Cylinder
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Fig.3-2 Definition of Potential Functions

TWO-DIMENSIONAL ANALYSES
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Fig.33 Transmission Coefficient of Single and
Double Cylinders
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Fig.4-2 Transmission coefficient of moored floating cylinder
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Fig.5-2 Calculated Cross-Seclion of Permeable Seawall
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Fig.5-3 K; for Sloped-Face Seawall
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Fig.5-5 Kr and Ky for Breakwater with Sloped Faces
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Fig. 56 K. and Ky for Vertical-Face Breakwater
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