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Abstract

Green's function is one of the most powerful tools to analyze the boundary-
value problems on water wave motion. However, in many cases, it is difficult to
derive the Green's function satisfyving the imposed boundary conditicns of the
problems. This paper shows an extremely simple method of analyses by the direct
use of Green's identity formula instead of Green's function. The propossd method
can be applied to the two—dimensional boundary-value problems of small amplitude
waves, including fixed or oscillating boundaries and impermeable or permeable
boundaries. 1In this paper, the formulations and numerical caleulations are
introduced for several examples.

I Introduction

The problems on wave reflection and transmission at permeable breakwater
and seawall with vertical faces and the motion of flcatirrg body with rectancular
cross-section ete. are the boundary-value problems for the fluid regicns with
vertical and horizontal linear boundary lines and one of the author has shown
(1971, 1972) that such a problem can be analyzed by the method of continuation of
velocity potentials between adjacent fluid regions. However, the boundary-value
problems for fluid regions with arbitrary shapes such as permeable structures with
sloped fades, floating bodies with arbitrary cross—sections and so on cannot be
solved by above method and fregquently even by the use of Green's function.

The method to be intreduced in this paper is not to use Green's function
but to use logarithmic function of the distance between the point on the boundary
and the inner point of fluid region in the Green's theorem. By means of our methoed,
the problems concerning to the sloped-face permeable structures, the floating body
in variable water depth area and so on are easily fornulated and mmerically analy-
zed. In the followings, the formulations and numerical calculations for small
amplitude waves are introduced and compared with experimental results,

ITI Green's Theorem and Identity Formula

We assume that a potential function &P (x,2) is defined in a closed domain
enclosed by a curve D in x,z-plane as shown in Fig.2-1. Indicating the peoint on
the boundary curve D by (E,7), the outward normal by )/ , the distance between the
point (.’-;,2]' and a point (x,z) in the damain by r, that is, r=J{§-x}‘l+ E’Z-*zlz,
and the constant reference length to the gecmetrical size of the domain by he, it
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follows by Green's thecorem that the potential walue at point (x,z) is provided by
the potential values ‘f’ (€,71) and its normal derivatives 3¢ (£,7)/3 (V/ho)
on the boundary curve as follows:

. 2Gg (/) _ 2PLED pray
ek [[%? 20/he) AN/ he) ejttha)]

(2.1}
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o

If the point (x,z) lies on the boundary at (£',7'), Bg.(2.1) leads to the
Green's identity formula as follows:

F5)== [[cktf;?}af“-‘}iﬁﬁ“J- IFED g,y (R/h)] 42 @2.2)
L

2(¥/ e) 3 (V/he)

R=fE-EF+ (7 - ¥
In BEg.(2.1) and (2.2), the integration denotes the line integral along the
curve D. Then, dividing the boundary curve into N small elements by N points and
indicating the length and central point of the j-th element as A sy and (£,
as shown by Fig.2-2, Bq.(2.1) and (2.2) are approximated by the following summa-
tion equations, respectively,

P(LI)= ?‘f _-ﬂ[gyg,#[jj_f—:ﬁd‘?{j),] i
g=i
; 2 . ) o
Pl = 2 [Eejdui)-E 9G] R
J=
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U=, FG)= 2P L) A e

¢yl f"x. ﬁi = _ .
Exj = i:'-f foﬂ%:f) e L Ex= %fésja&[u;iﬂj m) = O
E 2 Kij
ELJ -’-':5 Fﬂ-} (_h‘_:'-‘) ik ELJ o -Lf‘_j&wf:'u} fp? EL %1_5.::

ExJ, Eyj and E; 15, El:I are integrated wvalues over the j-th element refer-
ing to the point x = (x,z) and 1 = (E 7;) » respectively, and they are calculated
numerically as fr:rllcws

*‘J“EE"?( ),»:;5 Eu= (""fzm ﬁSt
Euy;:gll:j/ﬂ!t" E:[:i' =€

iy is the subtending angle of the point i = (§;/9;) to the j-th element,

{2.7)

where 9
and
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Ri=JG 57+ (1 =1)°, A4S =de5) '+ )
85=4 G5, Al=F(%n= )

Exj and-E_‘.xj are calculated, replacing the point i = iﬂ"?f} by == (x,z)
in Eg. (2.7).

Eg.(2.1) or {(2.3), the Green's theorem, states that the potential function
at any point in the domain is determined by its boundary-values and normal deriva-
tives of the interested potential functicon,

Bg.(2.2) or (2.4}, the Gre%'s identity formula, states that the boundary-
values 4’ (£ ,7 ) and its normal derivatives $ (£,{) are in linear relation-
ships which are defined by the geometrical shape of the domain. This is the first
set of relations between <¢ and % an the boundary.

Therefore, if another set of relations between ¢ and ¢ is provided, it
follows that they should be determined by solving the two set of relations, simul-
tanecusly. And, in our problems, the second relation is demonstrated by dynamical
cr kinematical boundary conditions on the boundaries of the interested domadin.

IIT Wawe Transformation by Permeable Seawall and Breakwater

As the first example, we consider the wave reflection and transmission
at permeable breakwater with sloped faces. In Fig,3-1, we take the origin O of the
coordinate system at still water surface, x—- and z-axis in horizont and vertically
upwards, CCD'C' is assumed to be the permeable breakwater with uniform porosity V
on the sea bed of variable water depth, where the depth at sufficiently distant
from the breakwater is constant h to the right and h' to the left. The incident
wave of frequency 0 and amplitude §; is assumed to come from the right. We take
the geometrical boundaries AB and A'B' at x = £  and —_rr_;”'r , where the depths are
h and h', respectively and divide the fluid. region inte four parts (Q) (I) (II) {III)
and (0') as shown in the figure.

The fluid motion in regions (0) {I) (III) and (0') is assumed to have velovity
pobenfial % (x,2:t) with potential functicn ﬁP (x,2) as follows:

Pz r}=1%’icﬂx,a;e“‘¢ 3
where g is the gravity acceleration and t is time. The potential functions in
regions (0) (1) {IIT) and (0') are denoted by, (x,7), 'lx,2), ¢ te,2) and ¢ (x,2),
respectively.

(i) Since the fluid regions (0) and (0') are of constant depth and so far from

the breakwater that the scattering waves are damped to be vanished, the potential
functions for them are demonstrated simply by Eq.(3.2) and (3.3} without scattering

terms.
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. ﬂ i
P z) = ‘F'E”"m*”/ﬁih’-‘—'i (3.3)

In Eq. (3.2), the first term is for the incident wave and the second term is
for the reflected wave with complex reflection coefficient ¢ . Eg.(3.3) is for
the transmitted wave with complex transmission coefficient (/. The functicns
Alkz) and A'(k'z) are given by Eq.(3.4) with wave number k and k' for regions (0)
and (0'), which are determined by Eg.(3.5). The reflection and transmission
coefficients Ky and Ky are provided by Eg.(3.6).

5 ! f
Alkz)= % Ak'z)= “":i%f?} (3.4)
R /
f.’.lr‘. .tﬂ.wﬁﬁkm % , R.”hfi'a:ui hfhf=“?‘_;“;—l e
=¥l Kem | (3.6)

{il} The fluid regions (I) and (III) have potential functions #’ﬂfx,zll and
f&b"ﬂ{x,z]; respectively, 2nd, on the free surface AC and C'A' at z = 0, the
free surface boundary condition provides the following relaticons.

[TE) )
3:'[" o> ﬂ:'b{"" —(m Pl 2,
L 5 UlY  yhere [T= The (3.7)
ST =5t G i ot RPN st [ 7

and hy is taken as the distance between point A and B', _
On the gecmetrical boundaries BB (x = £ ) and A'B' (x = -'), we have
from Eg.(3.2) and {3.3)

F=(1+@)ARD,  fi=h 3 = o (1-y) AlRD) (3.8
b= PARD), & =-h =i p'ARD) (3.9

o R
i A=y, Ae=kh (3.10)

On impervious bottom DB and D'B', we have

C—Pm,m= ;‘f,ermf'ay&,f!:g}: o (3.11}




© (iii) As for the permeable region (IT), indicating the quantities for £luid motion
by superscript *, the mass and momentum equations are demonstrated by horizontal
~and vertical macroscopic fluid velocities u*, w* and fluid pressure p* as fol :

ar 22
. ) . S {3.12)
L 1o Bgx tgwt  T9PF MWk
B T or R FaE T ¥

where j' is the fluid density, V is the porosity of the breakwater, f! is the
linearized coefficient of dray force to the porous material induced by the fluid
flow through the breskwater. The fluid motion of Eqg. (3.1P) has welocity potential
P *(x,2:t), which is expressed by Eq.(3.13) with potential function ¥ (x,z),
and fluid velocities, pressure and surface profile are provided by Bg.(3.13)(3i4),

. : .-';l.' i . I-:?‘r
F(z:t) = % Frirzle {3.13)

w=2Ehy, wi=3®hz, Phyg=-if¢ e
: - (3.14)
C#/;f—if%f#*ft,e;if”q, ?‘“—'%, A =141 M

tn the free surface CC', we have Bg.(3.15) and on the impervious bottom DD',
we have Eg.(3.16).

* Al — .
g‘g =d%.¢* p* = of [T* (3.15)
;%ﬂ"z o ¥* = O (3.16)

(iv]  On the boundary surface CD and C'D' between fluid region (I) and (II), and
(II) and (IIT), it follows from the continuity conditions of mass and energy flux
through the boundaries that

e M :
P = | %f— = b i;ip T %4:‘” on @  (3.17)
CF* s ,h_?,iw f’bszf ¢Ptﬂ on C'D' (3.18)

v As shown in Fig.3-2, dencting the potential functions on the boundaries
AC, CD, DB and BA for fluid region (1) by 'y 4/ .off” and & , on the

5 ¥ 1 T g & A o x B
boundaries C'C, CD, DD' and D'C' for fluid regicn (IT) by ef.} v 54'5‘1 ;{} Elnd.t?",i '
and on the boundaries C'A', A'B', B'D' and D'C' for fluid region (III) by ﬁ”ﬁi
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. 3 %
?5; <f-1"’>, (‘?J' , dividing these boundaries into N{}'}, Ng”; H{” . M elements; Ny ,

L 5 N{“elerents and &1, m', Y, N elements, respectively and taking the
outward normal for regions (I) and (III) and imward normal for region (II), and
applying the boundary conditions (3.7) (3.B) (3.9) (3.11) to the Green's identity
formula (2.4) for regions (I) and (ITI} and conditions (3.15)(3.16) (3.17) (3.18) to

the Eg.(2.4) for region (II), we have the following egquations:

{a) For fluid rag:ton (I):

—«:ﬁﬁwf{ Ei;-TE)S :J:-LZ'[E”cﬁ,r]J E;;#H]J
4LIJ

e Z’ I:-,J‘f i)+ q, L,G-LTMFLJ Z’Gi'.ﬂ(ﬁ!}fy} (3.19)

T=

(i= l'uNE‘,I 1 MHEI, 1~ N;:T}and ff.,zp".l cn AB )

= # — [}
Gir = Eiy+iAe Eir , Giv=Eir—tAeEix (3.20)
{(b) For fluid region (III):

H! U

-'4;”{"']' T Z Elj FEH)‘:P EJ_] ‘l‘ LELJCP 11"'}" Lj %E?J"’J

B
- :H Egdaapt ¢ E:G” (KZ)=— ZG TARZ) i
(i=1vny 1~ 8, 1~ nna (-2, 25 ) onater)
where
C—}Er = E‘r +4 A0 Egy ] G:,-I= E;r" $M By (3.22)
(c} For porous re:;mn (II}:
H)
¢ m+2 (ES+4TE )4 m+Z’[P E, - B 4"5)
I= C NG
+ Z’ Ej i)+ Z’Lp E - ESF%] = 0 st
[f] 3}

{l—lm‘N: ¢ L~N;, l-"v"N'_;,l-'h M3 )

, , 3 #*

and for point i on CD and C'D', that is, for 1 = 1~ Nand i = 1~N3, 1)
; { i %)

should be written as -[E‘-cﬁ' and —!é—cfa; , respectively. The points (¢ +Zp) and
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1-—£ fy) may be taken anywhere on AB and FL B', respectively.
B7.92.19) (3.21) (3.23) provide (N, + 28P+ NV N7+ NF + 0% 2P+ w0k 2)

linear eqrations with respect to the same mumber of unknc:wn quantltles P g1,

&, q‘»r : él,t_,_ : i 7 F2, #Mand ¢ , ! . Consequently, solving
these equaticns similtaneously, we can determine all of the unknown quantities, by
which the potential vdlues at any point in the fluid regions are calculated by
means of Eq.(2.3) and the reflection and transmission coefficients are by Eg.{(3.6).
The surface wave profiles are provided by the real parts of the following express-

ions:

7.9 "
From A' to C': gf}_}——tﬁb fJ}fu ; juN“;Ll
; x .
Prom C' to C: SfjJ:“Lﬁqﬁ. H}E{_“L : j=l’VN:E s

)
My =~ 1

[
1]

From C to A: 5ifi>=-£4>f”"cj:5 e i

Fig.3-3 is the calculated and dbserved reflection and transmissicn ooeffi-
cients of permeable breakwater with 1:1.5 sloped faces and with the width h at still
water surface, which is placed on the horizontal bottom of water depth h. In cal-
culations, we tock WV = 0.5 and P/ = 1.0 for every non-dimensicnal frequency

b/ 9 , and the numbers of the calculation points on the boundaries were n¥=
10, N n{= 7, NJ= 24, 0= N{=20, W= NP= 13 and M= M' = 10. Observed
values were- measured in wave flume with length 22 m, width 1.0 m and water depth
h =40 cn. The model breakwater was made by quarry stones of mean diameter & am
with porosity 0.43. The incident wave heights were 3 to 5 om and the reflection
coefficients were measured by Healy's method, @

Fig.3-4 is the one for vertical-face brekwater with width h at constant water
depth h., The conditions for calculation and measurements were the same as abonve,
It was found that the calculated results by this proposed method were entirely in
agreement with those by our method of continuation of velocity potentials (1571} .

fs seen in Fig.3-3 and 3-4, the calculated results agree well with the
obeerved values in tendencies, in spite of the linear dependence of the drag force
on fluid velocity and of the constant coefficient K/p.  for all frequencies.

In reality, the drag force F to the porous material induced by the flow
through breakwater is proportional to the fluid velocity for low Reynolds nurber
and to the square of the latter for high Reynolds mumber, and is demonstrated in
the farm of F'= au + bju| u in general. And if the fluid velocity u is written

as u=u,oos r~t, Fois written as follows:

au + blu] u=a v, cospt + EET': b uf‘ { cosqat + —-%—cr_}siaavt = %5 cos So-t ++)

o
1]

il
==l A =g b u¢]msa-t + grr.b u,,, ) -S-msiwut e )
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Therefore, the calculated results by the drag force coefficient ascumed to
be linearly proporticnal to the fluid welocity may contain errors less than 20%
of the cosfficient b. These errors can be adjusted by means of the Lorentz's
Principle of equivalent works, but here we donot enter into the problem.

Fig.3-5 is the caleulated distribution of equi-potential lines (solid lines)
and its orthogonals (broken lines) for permeable breakwater in Fig.3-3 at pt = U?
30°, 60° and 90", when the incident wave crest approaches to the breakwater.

Hbove method is more easily applied to the permeable seawall.

Fig.3-6 is the calculated and cbserved reflection coefficients of 1:1 sloped-
face seawall with width h at still water level on impervious bottom of depth h in
front of vertical impervious wall. Fig.3-7Tis the ane for wvertical face seawall.
The conditions for calculation and observation are the same as those for above
permeable breakwater. In Fig.3-6 and 3-7, the calculated values are somewhat
different from cbserved values, but the tendencies are in good agreement.

The better agrecment betwe‘%n the theory and experiment on permeable break-
wvater and seawall shall be atta:'}led by the selection of the more appropriate values
of Vand Wi .

The problem on the submerged breakwater is also analyzed similarly.

Fig. 3-8 is the calculated and measured reflection and transmission coeffi-
cients for i;rpe:neable submerged breakwater with trapezoidal cross-section whose
upper surface is 0.6 times the lower bottom in width and 0.3 times the water depth
h in depth. (a) (b) (c) are for the cases whose bottom width are 1.0, 1.5 and 2.0
times the water depth h, respectively. The calculated and measured reflection
coefficients are in good agreement, while the measured transmission coefficients
are somewhat lower than those of calculated values. This seems to be due to the
occurence of higher harmmonic waves induced by the propagation of waves through
the shallow water depth area on the upper surface of trapezoidal cross-section.

IV Wave Transformation by and the Motion of Floating Cylinder

In Fig.4-1, it is assumed that a cylinder of arbitrary cross—section CDD'C'
with gravity center at (x,,Z.) and center of bouyancy at (x, zp) in equilibrium
condition is moored by spring lines OE and D'E' with spring constant K on the vari-
able sea bottom B'E'EB, and is subjected to the incident wave of frequency g and
small amplitude 5, from the right. Then, the position of the gravity center of
the cylinder (x,,2z¢) and the rotation angle & of the cylinder around the gravity
center at any time t in motion are expressed by the complex amplitude of horizontal
and vertical displacements X, 2 and of the rotation angle H as follows:

I:‘_= T_ﬂﬁ‘xﬁLﬂtr E‘ =E‘+ Z.e E.‘_‘h-t" g ek @'Edm‘t - (4.1




Similarly to the previous section III, the fluid regicn is divided into

ee parts (O) (I) and (0') by the geometrical surfaces 2B and A'B' at constant

" depth h and h' , sufficiently distant from the floating body.

4 For the velocity potential in the form of Eq.(3.1), the potential functions

" for region (0) and (0'), denoted by # andg,; , are demonstrated by BEg. (3.2) and (3.3)
and the one for region (I) is dencted by <
{1} Denoting the potential functicns on the boundaries of region (I) by cl,.ﬁ_, on AC,

%z on aD'C', ¢ on C'A' and ¢, on B'E'EB, respectively, the boundary conditions

an the free surface AC and C'A', on impervious bottom B'E'EE and on geocmetrical
surfaces 2B and A'B' are provided by Bg.(3.7){3.11) and (3.8) (3.9), respectively.
(i1} on the oscillating surface COD'C', the normal derivatives of the potential
function <f; is demonstrated by the following expression, due to the kinematical
boundary condition:

R 1 -

where a is the reference length to the horizontal size of the cross—section of
cylinder, for example, a is:taken as half width for rectangular cylinder and as
the' radius for circular cylinder. (x,z) is the coordinate of the point on the
surface (OD'C' and s is the length measured along CDD'C'.

{iii) The complex amplitudes X,Z and (Hl in above expression can be demonstrated
by the potential function ¢b, on the immersed surface of cylinder, taking account
of the equations of motion of the cylj_r.-ier as follows:

Z
a ¥oo dzs _
Moggt™ Pe¥fr, Mogs-Pr +PotPe
2 (4.3)
Iﬂgf=Tﬂ+T5+ME.

where M is the mass of the cylinder; Ip is the moment of inertia arcound the gravity
center; B, Py, Tg are the resultant horizontal and vertical fluid forces and
moment around gravity center due to the fluid pressure acting to the immersed
surface; Pg, T, are the restoring force and moment for vertical displacement and
rotation of cylinder due to statical fluid pressure; Fy, F,, Mg are the mooring
forces and moments by the mooring lines induced by the motion of cylinder.
Indicating the fluid density by € , the draught in mooring condition by gh
{17930 ), the mass M, the moment of inertia Ip and the immersed wvolume of the
cylinder vV are expr:'essed with positive constants W, , Y. and p/; as follows:

M =y,§ agh , I, =Vaftagh), V=), agh (4.4)

Since the fluid pressure on the immersed surface is given by p(j) = -ix
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; s .
$(;' &""", Py , Py and Tgare given as follows:

; .._“ ¥

(4.5}
Te=1{}s0 ( {O-Tydx+ (Z-Tndz 002
where integrations are taken aleng the surface COD'C'.
Denoting the length of water line as 2 Eo ; Pg and Tg are given as
i) g _,i-if‘j: e s AT 2 fc-.: . ; (= A
L=-2pfbZe’", B=-fiT|5 3 -(E-B}0€ (4.6)

For simplicity, we assume that the cross-section of the cylinder and the
mooring conditions are symmetrical with respect to the vertical line through the
gravity center. Then, taking the angle of mooring line with horizental as ﬁ' and
the mooring points on the cylinder as ( ag, be) and ( - a,, be), the mooring forces
and moments to the cylinder F,, F, and Mg are expressed as follows: .

irT ik

Fx=-2K(X~-S®@)cosf.é" , F,==-2Ksinf .e

. (4.7
2KS(K—S¢E"‘JGDS‘E errtwhp_re S=bs-2—-[a, fejt.anﬁ

Mg

Substituting Eq. (4.1) (4.4) (4.5) (4.6) and (4.7} into Eq. (4.3), it follows
that X , Z and @ are expressed by <&(x,z) as

%-:-——'[Chtlz‘;{[.\w E‘E'E‘—i‘(f 1%‘“1,”) ﬁiz} (4.8)
; ax
%:K.J;;ﬁh{llz} - (4.9)
it ~1c & —Pc Z
0 -4 ol B2 4 (ko]
whers
Y= o(-.a{a—fiig 5 oy = faa- V-%r
1" v .‘g} 2 .ee i E---E.&
dz= f‘m‘zz*ﬂ% +*-%{‘-_ dar-f%ﬁe—i’-a%r*?[a_ﬁ pi%' @
: g KS? =

ﬁil:%mlﬁ: 'ﬁz;=%%*m“z_ ; .m;s.%%fffﬂ : (4.11)
tie =_—.~?£fz coa




Introducing Bq. (4.8) (4.9) (4.10) into By.(4.2), 5, on the immersed surface of
der is written by 45 as follows:

%L:,z:m r'fcgfu,v;-d F(x1.2;u,1) (4.12)

; '. E Lo oof u-=Ne x =Ty bk 1 - B = 2.
8 d Fix,z:u,v) [t :M_-'--E‘" - - v b e r{kxﬁ i

- u-X i = = Xo - 5
uaxgg_l dg +T[H‘va _'k’m}x = @x__,_i{d!_l%ezaz’ N

B, - <, < L}_—i"}%] g ' (4.13)

‘where (x,z) and (u,v) are the coordinates of the points on the immersed surface.
Indicating the calculation points on the surface as E%,?J:I and {;“m, :)m}, corres-
‘ponding to (x,z) and (u,v), Eq.(4.12) is written as follows:

s Nz _
FE =T~ 2! Eim) dFig,m) (4.14)

- (v}  Similarly to the preceding section, applying Bq. (3.7)(3.11)(3.8) (3.9) and
(4.14) to the Green,s identity formula (2.4) for fluid region (I), we have the
following linear egquations with respect to the potential fwwticnsqﬁ cn the boun-
daries and '1” pr

NZ g2
~$t, {Eﬂ -TENGGI+ 21 ) Lm& =[5 de:aifJJﬂ“"J
s i il it
2 2(5; MEq)hi + ZTJ":H Fuli) +¥ ZG”M‘QE” ¢ ZG‘"'A{HI'}
ZGL, AlRE) where Ojm=0 (3tm):=1(3=m (4.15)

{1=1~ Ni,1 ~ N3, 1~ N3l Ngand (£,2z) on 2B, (-2’ +Zg) on A'B' )

Solving the equations, we can cbtain all of the boundary-values of potential
function of region (I} and the reflection and transmission coefficients, similarly
to the section ITI. Then, the amplitudes of motion ¢f Cylinder are calculated by Eq.
{4.8) (4.9) (4.10) and also the mooring force F to the wave-side mooring line DE is
calculated as follows:

L__+__tanfa T—] cosf e (4.16)

The mooring force to the lee-side line D'E' is demonstrated by replac.l.ng{;
by -?' in above expression.
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hs an example, we consider the case when a circular cylinder of uniform
density 0.584 with diameter D = 32 cm is mpored by spring lines of spring constant
K = 0.227 f'ga with mooring angle f = 33° in water of constant depth h = 35 cm and
the gravity center of the cylinder is 4.0 om below still water lewel in equilibrium
condition. In this case, D { = 2a ) = 0.514 h, the draught is 0.67 h ( g = 0.67 },
the mooring points on the cylinder are ( + 0.486 h, — 0,114 h }, and V= 1.467,

Vi = 0.670 and V3= 1.646,

Fig.4-2 is the calculated (solid line) and measured (open circles) trans-—
mission coefficients with respect to the non-dimensional frequency or to the ratio
of diameter to wave lergth DYL. Experiments were carried out in wave flume with
water depth 35 cm, length 22 m and width 1.0 m. The figure shows that the calocu-
lated and measured values are in good agreement. Moreover, it shows an interesting
fact that the incident wave ig perfectly intercepted even by floating cylinder, if
the frequency ﬁ‘zhfg is 0.42 and 1.74, that is, D/L is 0.10 and 0.26. Fig.4-3 is
the calculated reflection coefficient and amplitudes of motion of cylinder.

V Conclusions

It is clear that the proposed method provides a conwvenient and simplified
analyses for two—dimensional boundary-value problems of small amplitude wanmes.
And, if the difficulties arising in solving similtanecus equations of so many un-
known quantities were overcome, this method is extended directly to the problem of
three—dimensional waves and alsq to the finite amplitude wave problems by means of
perturbation method. "
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Fig. 4-1(a) Definition of Floating Body
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Fig 4-1(b) Definition of Potential Functions
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Fig.3-4 Ky and K¢ for Vertical-Face Breakwater
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