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Abstract

A method of numerical analysis which is simplified by means of Green's identity
formula is proposed for the analvses of two-dimensional boundary-value problems
of small amplitude waves in finite water depth.

log {1/r) iz a particular solution of Laplace’s equation in two-dimensional bounded
domain, if r is the distance between an interior point and the point on the closed
boundary. Hence, using log (1/¥) az one potential function, another arbitrary poten-
tial function at a point in that domain is expressed by its values and normal
derivatives on the boundary, by means of Green's theorem. And, taking the limit
when the interior point approaches to the boundary point, an integral eguation
with respect to the boundary-values and normal derivatives of that function is
provided, So that, if another relationship between them is defined mechanically,
above guantities on the boundary are to be determined. Since the mechanical
boundary conditions are always linear in small amplitude wave problems, two.
dimensional boundary.value problems are easily analyzed numerically by this
principle,

v Ag examples of application, this paper presents the formulation and numerical
results for wave transformation by permeable breakwater, seawall and submerged
breakwater of arbitrary cross-sections, by linearizing the fiuid resistance in porous
material so as to be proportional to the fluid velocities,

The problems for those structures with vertical faces were solved by another
method of continuation of velocity potentials by one of the authors, and they are,
of course, analyzed as a special case of this proposed method. It is certified that
the results of these two methods are in perfect agreement, so that the wave
transformation at above structures with arbitrary sloped-faces can be estimated
by the proposed method, with appropriate values of coefficient of fluid resistance
in porous material,

« Moreover, it is shown that wave transformation by graduval change of water
depth and beach profile, and wave action to the submerged impermeable body of
arbitrary cross.section is easily analvzed as a simple case of this method,

I Introduction the problem of wave (ransformation by
permeahle  breakwater and seawall with
p vertical faces, by the method of continua-
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results are proved to be reasonable.

However, above investigations are limitted
to the case for vertical-face structures which
are rarely used in actual field. Hence, it
15 desired to analvze the problem on usual
gloped-face breakwater and seawall. Sollitt
{1972) proposed a rough estimation on above
problems, and Meccoquodale (1972) has inves-
tigated numerically by means of finite ele-
ment method. However, the former inves-
tigation seems to be too conventiomal to
discuss the effect of sloped-faces and the
latter is too complicated and takes much
time in calculation even for one type of struc-
tures and an incident wave characteristics,
so that it seems to be unsuitable for their
investigations to obtain general considerations
on wave transformation by various types of
structures and various incident waves.

This paper proposes a numerical method
of analysis which is extremely simplified by
means of Green's identity formula for two-
dimensional wave problems and presents the
formulation and numerical results mainly on
the permeable structures of sloped-faces, as
application examples of our method.

According to the Green's thoerem, the
value of a potential function at a point
in two-dimensional bounded domain is ex-
pressed by its boundary values and its normal
derivatives to the boundary, if log (L/r) is
used as a particular solution of Laplace's

lx, 2) = —

= a
W ol i s
2x SD['M” ¥ ﬁ'iv.-'r&o}mg (rfho

equation, taking r as the distance of the
interior point and that on the closed boundary.
And, to the extreme case when the interior
point approaches to a boundary point, it fol-
lows that a linear integral equation is given
with respect to the potentials and its normal
derivatives on the boundary. This equation is
dependent solely on the shape of the domain,
so that it defines geometrically the relation
between potential value and its normal deri-
vative on the boundary. Hence, if another
system of linear relations between them is
defined by mechanical boundary conditions,
it is possible to determine them by solving
above geometrical and mechanical relations,
simultaneously. As long as the mechanical
boundary condition is linear with respect to
potential values and normal derivatives, ahove
principle of analysis is generally applied to
the boundary-value problems.

II Green’s identity formula

Assuming that a function ¢lx, z) satisfies
the Laplace's equation in the domain enclosed
by a closed curve D) and that it has con-
tinuous second order derivatives, it follows
that the potential function at an interior
point {x, 20 is expressed by its wvalues on
the boundary curve @(f, x) and its outward
normal derivatives to the boundary 8a(2, ¢)/8y
as follows:

oéis, 7)

20/ hy) log (w’hu]] ds'h, (2.1

where r is the distance between the interior point (x, z) and the bounary point (£, ¥, h, is
a constant reference length to the size of the closed domain (e.g. the water depth), » is
outward normal to the boundary and integral denotes the line integral in counter-clockwise
direction along the boundary D

To the extreme case when the point (x, z) approaches to the point (5", %) on the boundary,
the following integral equation is derived from Eq. (2.1):

fal o ny = i) opis, 'ﬂ-‘} 1 :| !
Tl =— &= = i / .
&g, ) L |:¢ 7l E{w’&ﬂ}lﬁg (R hgy) B0 /hy) log (Rihy) | ds/hy (2.2}
where R indicates the distance between the point (£, 3) and (2", ¥).

If we divide the boundary curve I into NN small segments by N points and indicate the
central point and the length of each segment by (&, 9 (j=1~N) and by 45; it follows
that Eqg. (2.2) is reduced to the following difference equation:

N
#li) = 2 [Ey 6(5) — Eyy $(3)]

J=1

(i=1~N) (2.3)
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where &(f), #(7) denote the values at point (&, 7, and &(f)=a¢(j)/Flv'h,). Ey and Fy are
the integrated values as defined by the following expressions:

® _ log (Rylhy)-ds/h,

K =
P~ log (Ryy/hy)-ds/hy, E
R OF Uity 5 i3 a5, a/ .h.;.: (2.4)

":E!'-"= i"'. :-E_r ™ '-':a} =+ ﬁ?_l 7}:-;'

Eq. (2.3) yields a system of linear equations with respect to ¢ and ¢ on the boundary.
They are dependent solely on the shape of the domain, so that provide the geometrical rela-
tions between ¢ and 4.

The wvalue of the potential function at interior point (r, z) is calculated by means of
Eq. (2.1) as follows:

Blx, 2) = ; Ellir”m;) Ez 3(i) 2.5)
p

where

log (rxs'hy) dsihy

£ 1 i 1
i L.a-,]og‘r”m”}ds' Rl L @lv/hg) (2.6)

rxi= x’rféj_—-ﬂ'z Figy—2)*

IIT Dynamical and kinematical boundary conditions for small amplitude waves in
finite water depth

Now, we consider small amplitude wave motions in incompressible, inviscid fluid and those
in porous materials.

We take the origin of coordinate svstem O at still water surface, x-axis in horizont,
z-axis vertically upwards, and indicate the time and gravity acceleration by ¢ and g, respec-
tively. The amplitude and frequency of incident wave are denoted by &, and ¢ (=2x/T: T
is wave period), respectively.

(i) Wave motion in incompressible, inviscid fluid

Putting the velocity potential of fluid motion as @y, z:; )= g‘“ #lx, 20", it follows that

the potential function ¢i(r, z) satisfies the following Laplace’s et]uatmn:

#a/d + 85825 =0 (3.1}

-

Horizontal and vertical fluid wvelocities «, w, fluid pressure p and surface wave profile £
are provided, indicating the fluid density by p, as follows:

= _i:‘.l"z_]_ , W= ?q ...p. = Elfi X, 2}&! : R id"fxr 0}£fu-‘ {3.2J

fix #z ' pgl, £

!:rl:

=

Boundary conditions in our problems are as follows:

fa) Free surface boundary condition

Combining the dynamical condition of constant pressure and kinematical condition, the
free surface boundary condition is vielded by the following equation:

[

B _ kg
gz @

@ b d
=L and so §=—12
g &=

e at z=0 (3.3)
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(b} Boundary condition at rigid surface

Fluid welocity normal to rigid surface should be vanished, so that

L. i B _ A
Ay 0 and so ¢ Bis/g) ] at rigid surface (3.4)

{ii) Wave motion in porous materials

It is considered that the fluid motion in porous materials like permeable breakwater and
seawall is imposed by a resistance proportional to the square of the fluid wvelocity and by
the one proportional to the local fluid acceleration. Linearizing the former so as to be pro-
portional to the fluid velocity with proportional constant g, making the latter to be included in
the virtual porosity ¥ and indicating the horizontal and vertical macroscopic fluid velocities
by ty, twg, fuid pressure by py, it follows that the equation of continuity and horizontal
and vertical equations of motion are vielded as follows:

Buus | Ows _
o + =5 (1] (3.5}
1 Tlig = 1 fij .
V- 5 P & Vg .0
1wy 1 8ps 1 .
PR o = 3.7
vV ot 5 05 KLt T SH
Above fluid motion has a velocity potential @4lx, 2 f= 550 de(x, 206", by which fluid

o
velocities, pressure and free surface wave profile are provided as follows:

Py = ﬁlﬂ* " Wy = ﬂm* 2 Px = —fﬂaﬁ*f.‘t, Z}Eiu:
dx oz PEC
. 3.8
S¥ — iBgalx, 006’ where 8=-2%, a=1—iuls
&o Vv
Boundary conditions are obtained as follows:
fa) Free surface boundary condition
.. . . - Box _ 1 80 s g5
Combining the kinematical condition on free surface i o at z=0 with the
constant pressure condition, the following relation is derived :
2 2
Bbx a2 Gp and 50 du= a ho P at z2=0 3.,
iz g
ib) Boundary condition at impermeable surface
Due to the vanishing of normal velocity to the impermeable surface, it follows that
ﬁ;* =) and so gu=0 on impermeable surface (3.10)
¥

Above-mentioned conditions are for fixed boundaries. For moving boundaries in oscillatory
motion, similar relations to the above are easily derived.
IV Formulation for permeable breakwater with sloped-faces

Suppose that a rubble-mound breakwater is located on the impermeable sea bed with wave-
side depth % and lee-side depth &', as shown in Fig. 1 and that a sinusoidal wave with
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amplitude ¢, and frequency s incidents to the breakwater from the right-hand side. The
fluid region is divided into five regioms, where the first region (I) and the fifth one (V) are
to the right of the vertical geometrical furface CB and to the left of wvertical surface B'C’,
respectively. The second region (II) and the fourth region (IV) are those enclosed by CABC
and A'C'B'A’, respectivelv. The third one (III) is the region of porous material, enclosed
by AAB'BA.

Z
'{ 1,0) A __lo N\A - C(1,0)
cb(rfﬂﬂ“ ki, 1= S = N (n !
¢2 ucb“’} 4 /o @ AT LT
|"il-1'*-l‘-'12 = "‘”2 j=1-r,|{§‘ p=1~Mg 1

(1v)

Fig. 1. Definition Sketch for Permeable Sloped-Face Breakwater

(il Potential functions in the first and fifth regions

Potential function ¢,{x, 2) in the first region with constant water depth h is expressed as
follows ;

~tita-ty) coshk(z+h) %A o mia—t) €08 kylz + f1)

4.1}
cosh & h w1 Ccos &g ¢

{Pl':xs Z]= {6”:5—.)'—‘4&{?
where [ is the horizontal distance of surface CB from origin O, and % and &, are the roots
of the following equation :

2
Ehtanh kh= -k htank, h= U;' [w is integer) (4.2)
The first term in Eq. {4.1) is the potential function of the incident wave, the second term
iz that of reflected wave and the last series-terms represent scattering terms. Then, it
follows that on the geometrical surface CB the potential function and its normal derivatives
to positive x-direction at x=1{ are given as follows:

; sh kiz+ k) - cos kalz -+ k)
2=+ A= + 3 A, m :
L Lo P L
5 g : cosh k(z + k) - c_us.?e fz+,&) .
5,0, 2= —LL -z[e.kf::(l—.il ] - Ak h J (4.4)
b Fx/hy) O coshkh i
Similarly, the potential {function in the fifth region and its value and nr:rrma] derivative to
negative r-direction at r= —[" are given as follows:
iy cosh Bz + A% - cosk, (z+ k')
ix, -'—B iprpesry © 4 kl:o.-i-rj - (.
g%, 317504 — T cos kK s
2 iy cosh &'z + A% ! cos k Lz+k;
ot =1 2)=B, i+ B, = - 4.6)
te " coshk'h gx cos ki

LR h‘,[ » cosh k'(z+ k") ,coshk,“z+.i;_ﬁ_:| _
gol—r, 2 B iBEh ~osh IR +:Elﬁ*uk,¢}z i (4.7}
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where &' and %k, are the roots of next eguations.

Zr?
E'W tanh Bk = — b/}’ tan kK = ° ; (n is integer) (4.8)

The first term in Eq. (4.53) represents the potential function of transmitted wave.

{iiy Potential functions and Green's identity formula in the second region

In the second region, the potential function is denoted by ¢,. The boundary lines {:'_;1. fig
and B_(; are divided into N,'Y, A, and M, segments, respectively and potential functions
on these segments are indicated by ¢,"V'(j) (j=1~N,"") on éi, by ¢,(f) (j=1~N,'") on
A_I} and #,'"g (p=1~M on BTE.‘ respectively.

On the boundary BE‘ due to the continuity of mass and energy flux through geometrical

surface BC between the first and second fluid regions, it follows, taking the outward normal
to the boundary, ¢, 2)=4,""2) and ¢, 2)=¢,"(2). Hence, from Eq. (4.3) (4.4,

| L coshklz+h) = cos iz + k) ]: s
X [;{1 Ak T 35 Anky C2THE 3,0 (2) (4.9)
{5 An] Cmﬁﬂfﬁzﬂ: = i x:z] An E‘:I_Si:;_knggi-:i_E = ‘61-1}](2] (4.100

where 4,=%kh and A, =k.h.

Multiplying Eq. (4.9) by cosh kiz 4+ h) or cos kulz+ k) and integrating from z=—h to z=10,
it follows that "4, and A, are represented by #,'"" as follows:

I H]
dz
Ay=1+ 1 ®(p) cosh kiz, + & (—v) 4.11)
. TR b Rl

'”I

1 3 6,'Y(p) cos knlz, + ;g';..( f::p ) (4.12)
o

Ap == "
m N, sin i, o1

where  dz,= 1 (2441 — 2p-,) and

2
T Bl ) =1( i 231,..___)
N 5 (14 Shzig /! Na 9 14 TR (4.13)
Substituting A, and A, into Eq. (4.10), ¢,"" is represented by 4, as follows:
gy g COShRGHR) | b o HE-N 414
M) =2 o o .Efir.fﬂ &, i 4.14)

where

cosh k(z. + k) cosh kiz, + h) _ i cos kulz, + k) cos kulz, + R)

flr:ipl=i N, sinh 4, cosh &, e N, 8in i, cos i,

(4.15)

—
and r is used as flowing coordinate on AC in the same manner as f.

i
On the free surface CA, ¢,"{j) and §,"Y%j) are related by Eq. (3.3).

Applying the Green's identity formula (2.3) to the second region, it follows that at each
point (§) on the boundary, the following equation is provided :
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(4.18)

(4.17)

(4.18)

(4.19)

N -:'I;l & n ':IJ
"'1#(1:' e {Eﬁ A Ggo EU. 1!} ';" JI{_?}"‘ E |:E” 2195 I'ﬂ]{jll_ﬁil 21 7 IIE-:-{}.:I}
o h k(z, + h)
+ 3 FG ), M =— Ew COSTr AT
r=1 v- cosh 4,
_" Above equation is rewritten, according to the location of peint (f) on the houndary, as
follows :
2
h .
—dy— _ﬂ_é o Eln.ll.ﬂ oo Eu
BTN L .h . i1l Nyl1y
E El: 1 gn E.:.i:u q!rlu'{_?':"i' J‘El —5s,f+£.!_.]"9] ﬁf’lrg:{fl}_ JE'E g g‘iltZ](}:}
2
Ef,i;'“—-a ﬂu Ef._l.'” Ei};'z] Ej&.m
g
5 cosh Mz + R L.l P = AT L
Fi, ) ~ BB ah i R
My
+ 3 # $, 0 =2x # ceene = 1N
r=1
cosh kiz,+ k)
_ ) Lo ueg IR EEE = f = L
G, i cosh 4, ep E
where dy is Kronecker's delta, that is, ;=1 {i=7): =0 (i ). And

If]

Fii, ri= 2By, flr p)e ?Jz' —E.., Gip,ri=flr:p 2, + Eu

hy P

{iii} Potential functions and Green's identity formula in the fourth region

(4.20)

—
In the fourth region, the potential function is denoted by ¢, and the boundary lines A'CY,

e [
C'B' and B'A" are divided into N,'®", M, and N.,"® segments, respectively, where potential
functions are indicated by @p"t(F) (F=1~N""), @'"Mg) (g=1~M.) and ¢ (j=1~NS'"",

respectively.

Similarly to the second region, taking the outward normal to the boundary, B, B, and

go" are represented by #,'” as follows:
M,

By=-—yt I A h k' (z, + ')
S Ul e e
1 '”2 i i
.B..,=— T g L0 }C(]Sk,{'rl: + " Az
N, sin A, .}1 bs(q tgohd e |
a, | 4 |
$e(g) = Ef (51 )P (5)+ | ;*
1]
where
F'(s 1) = .208h Rz, + k") cosh &'z, + ") _ 5 cos k' (2, + B cos k(24 + )
N, sinh 4, cosh A, P N sind, cos d,’
1 24, 1 244
'=ER, A =kR, N, =- .(1 + o ) . NS =- --(1 L )
“o o =9\ Simh 2ty 2\ " sn2a;

and 5 iz the Nowing coordinate on C'B in the same manner as g.

(4.21)

(4.22)

(4.23)

(4.24)

{4.25)
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The Green's identity formula to the fourth region is as follows:

N, (2} Ny(2)

— o)+ 3 (EfY -5 ;"‘ EFV) V() + E(E“ s ()
J=1

!
— ES98,@()) + 3 F', s) §.(s) =0 (4.26)
=1

Above equation is rewritten, according to the location of point (i), as follows:

=gy d':ﬂ E'f_IE ” rE{_g.z]
ay(2) z: Gzﬁ Kyi2)
PR Ll S TR L PR e TN
E-.‘s.n_ﬂ'_z-f‘i!p_ E& Ef,ﬁ'm
LT g ']
Ef® F'ii, 5) ) R 3 B AL (4.27)
XN _(2) L]
- {E #r @;2*(;':4-2’ o P B =0 creees i= 1N (4.28)
J=1 E=1i
EG" -G'lg,s)) e i=g=1~M, (4.29)
where

e Ein ’G"{ﬁ"- s) mfits :G}" I=

e ¢ J ]

M
Fli, )= 3 Buf(s: q)- 4 + E,, (4.30)
=1 |

(ivl Potential functions and Green's identity formula in the third region

v i R
Potential function in the third region is denoted by ¢4 and boundary lines A'A, AB, BB’

—
and B'A' are divided into N¥*, NSV, N;* and N,'® segments, where potential functions are
indicated by ¢4'(i) (j=1~N*), o' (/) (G=1~N", ¢ () (j=1~N* and ¢ () (j=
1~N,'%"), respectively. And the normal to the boundary is taken inward.

—_—
On the free boundarv A’A, ¢4 and ¢4 are related as follows, on account of Eq. (3.9) and
of inward normal :

2
T g ﬁ;o o (4.31)

—
On the impervious boundary BE’, 4£'(j) vanishes identically.

— —_—
On the boundaries AF and B'A’, due to the continuity of mass and energy flux, it follows
that

8 r&m =g, 2 'ﬁm =4, 2 and B¢21 =q5212r, 52’ :,-;,2'131 (4.32)

On account of above conditions, Green's identity formula in the third region becomes as
follows : '

N1}

N 2
bl + 3 (B0 +a o BD) 60 () + T (5 BAa)— ESOR2()

Ny(z)

+ E BEO#P()+ X (5 EF0:2G)— E5O82(j2) =0 (4.33)
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According to the location of the point (i), the first term ¢$.(¢) should be written as follows:

For point (i) on A’ z‘«l (i=1~N* : gl =pPD, EV=0

2 # AB (f=1~N,"2" ; t}r*(f:':'ﬁ, by PE) (4.34)

—
A & BE' [1'=1"'-'N3*} . l;"r‘*':sl.r_(,‘rf:u}

—
v r BAG=1~N"): rﬁ*{sﬁ%%‘mm
I

{v) Determination of potential functions on the boundaries

Eq. (4.17)~{4.19), Eq. (4.27)~i4.20) and Eq. (4.33) provide linear equations with respect to
potential functions on the boundaries. They are (N,'V'+ 2NV + N'™ + 2N + N ¥+ N* + M,
+ M) equations with respect to the same number of unknowns 1, qﬁr‘zl ., B, @',
St B8, @ and £, 4., Consequently, by solving these equations, simultaneously, aII
of unknowns are determined, from which A, A, and B, B, are obtained by Eq. (4.11}
(4.12) and Eq. (4.21) (4.22) and potential functions at an interior point (x, z) in every fluid
region are calculated by Eq. (2.5) and Eq. (4.1} (4.5).

In above equations, E; and £ are calculated numerically as follows :

EEI‘J_ . I'I::IgI '._R,_} ‘h }'-—}—;E‘f- E‘f_--:-l (1 og AS k 1)' AS‘

o hq
= 1 £, — & W— 9 = L.
e __..._(4'; o gy — W Js.)r T e — Dl aadyr 48,
i R Ry bl R, i Eu 9 (&em el sali i
= . e 4.35)
i u‘i+1_$1 1 L = 6 ( Emu_'fi . SiT S ) ¢
" 245, ' " A4S+ A4S+ A4S, \ A4S, +45; A4S+ 45,

] 1
(Erea— &) =5 Ugpey—5-0)

1
A55= {dE)F+ (dy)® . dE=— 2

.
v, and ¥, are shown by replacing £ by ¢ in above expressions.

vi! Wave transformation
The reflection and transmission coefficients K. and K., by breakwater are provided as fol-
lows:
K,=|A,| and K.=|B,| (4.36)

And also, on account of the continuity of energy flux through breakwater, it follows that
the coefficient of energy loss in breakwater is calculated as

Ny'dy, W )
Ki=1—-K*— 0. « K2 437
Nu;l{, i : (4.37)
Wave height distribution around breakwater is calculated as follows:
P ' o P I
{! From —oo to point C' : 2] : | = |B eHEHN L BT B, et |
£ ] L =1
F:4]
(2} From point C' to A" —E,-—| == ::trz“‘{j}‘ (f=N"~1)
- i
(3) From point A" to A -i:—|=‘3¢§:]{j:n‘ (j=1~N,*) (4.38)
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i

(4) From point 4 to C : ‘ {:C m“’{j}‘ (= N"1~1)
n
1) ] i o=

{(5) From point C to : ‘ C”---—‘ el el P T I P
S | -1 1

(vii} Vertical-face breakwater

For vertical-face breakwater as shown in Fig. 2, the Green's identity formula applied to
the fluid region ABB'A’ of permeable breakwater provides the following equations with
respect to potential functions on the boundaries :

z
Al=1,0) _lo A1) "
Xiy
(ID | .«
o, R (M z&l dgl}
e ‘
Lo, O R 2
= ’_RK Zz==h
B

Fig. 2, Definition Sketch for Permeable Vertical.Face Breakwater

(G4 + acs ‘*F"F“] ( EXi Fali, )
¥ EX¥ o uhg“‘E?f;”:' n e+ EXS .1r &
bR A o’ () + 24 P Bl () — El g )
i= = o =1 = 1
1 EX0 4 o ﬁ-fiﬁﬁm ! fors 1| Gulp, 7)
= ) “h =
.f-"'-:‘;':ﬂ koo afiy E_T..“:' L E:.t[a]; -F:k(fi'r =
o k "'rj_
i i B ‘l .
Fyli, 8) S puip o e b ) i i=1~N*  (4.39)
=1 cosh A,
Ay r oo esdeas = l~N* (4.40)
_24 : ?q;\;]:bllz —2 K‘ Cushkfz +|h:' ’
=1 A M :
PP I i (oLt i =p=1n 4.41
Fiip, 8 cosh 4, Pl )
klz,+ k) !
. me(n cosh k(z,+h) e 5 49
G*fﬂ1 5 Lrg E CLJS]’I .r?n, i=4q 1 ME (4 4 )

where

Fuld, rﬁl——--E EXO f (i p)e | g +E:';~'*l, G4lp, r}=%f{r:f.ﬂ [‘:"J—E*“’

e
n

F:M:I, 5= -EL- E F:m“}flfg: g}-( ﬁz’. ) ; E.-’:“jq G;!t':'!?1 5= 1 f"(s . qj . ( Az, )+ E._*|H:'
ﬁ' =1 r{ln, ,I':l" kl}'

(4.43)



Analyses of Boundary-Value Problems for Two.Dimensional Water Waves 97

‘Solving Eq. (4.39)~(4.42), ¢, 5@, 4 and ¥ are determined, from which ¢%, ¢ and
Ay Am By, By are calculated as follows:

P = L[t B g (a5 f] )
: ! ! (4.44)
|;ﬁ“:'(f‘r:| = —_1.. gf‘( s JI'FHJL.‘J:' ( __)
d B 1 ) Ity
. | | "
=1 —— L¢‘2](p& cosh k(z, + )+ | 42|
e Y - > (4.45)
| e | 4% |
An N :%':F () cos kalz, + R | i
o ||'
i dz
By= ot > 33’ (g) cosh k'(z,+ h')+ ( --..ﬂ_)
AR iy e { (4.46)
R o oy v gty [ A2e
B, N sin A %nll;ﬂ* (g) cos k,'(z,+ k") ( 5 ) J

Wave transformation is calculated by the same way as (vil.

Y Formulation for sloped-face seawall

Suppose that a seawall of porous materials AB is placed on the impermeable slope DCB
as shown in Fig. 3 and a sinusoidal wave incidents from the right. The fluid domain is
divided into three regions (I) (II) and (III), similarly to the case of breakwater. The poten-
tial functions in these regions are denoted by g¢(x, z), & and ¢, respectively, and those on
boundary lines for each region are indicated as shown in the figure.

@lx, z) in the region (I) is expressed by Eq. (4.1) putting /=0, and A, A, are given by
Eg. 4.11) and (4.12). The Green's identities for the region (II) are entirely the same as
Eq. (4.17) (4.18) (4.19) and those for the region (III) are given by Eq. (4.33), dropping the
last terms in the lefthand side.

The reflection coefficient is provided by K.=|A,|, and coefficient of energy loss is by

=1—K? Wave height distributions in front of seawall are calculated by the same way
as Eg. (4.38).

z

[ ~—Hi

D A — 0 —% _x

iy, j=~ &y, ey T '
|

(1) {I}
{2}.
1,
P ‘!-*—-M
z=-h
B r A Fd 7

Fig. 3 Definition Sketch for Permeable Sloped-Face Seawall
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Fig. 4. Definition Sketch for Permeable Vertical-
Face Seawall

For the wvertical-face seawall when the
boundary line AB in Fig. 3 becomes vertical
as shown in Fig. 4, the Green's identities
for the boundaries DO, BCD and OB are
given by Eq. (4.39) (4.40) and (4.41), respec-
tively, dropping the last terms in the left-
hand side.

V1l Wave transformation by graduoal
changes in underwater depth and in
beach profiles of impermeable bed

Waves on sloping beach were analyzed by
Miche (1244), Friedrichs (1948}, Isaacson (1950)
and others. Waves on underwater step were
analyzed by Newman (1965}, Miles (1967} and
Ijima (1971).%

The former investigations are purely ma-
thematical and seem to be rather difficult for
engineers to apply to practical problems,
though they are limitted to the case of uni-
formely sloping bottom and of small ampli-
tude waves excepting Miche's. The latter
investigations are easily applied to practical
problems but in actual field it is rare to
encounter the underwater step, that is, dis-
continuous change of water depth.

The wave transformation by irregular or
gradual change of water depth and that of
beach profiles are easily analyzed numerically
as the most simple cases of the proposed
method.

{1} Wave transformation by gradual change
of water depth

This i1z treated as the extreme case of

Fig. 2 when the breakwater ABB'A’ on im-
pervious, gradually varying sea bed BB’ dis-
appears. Such a sitwation is represented by
putting V=1 and u/s =0, that is, =1, g=1
in Eq. (4.39)~(4.46).

{ii} Wave transformation by irregular change
of beach profile

Thiz problem is treated as the extreme
case of Fig. 3 when the permeable seawall
ABCD becomes impervious. This situation
is realized by putting the normal derivatives
#“ on the boundary AB to be zero. Hence,
the Green’s identities to be solved are given
by Eq. (4.17) (4.19), dropping the third terms
of the left-hand sides.

VII Formulation for submerged break-
water

Suppose that a permeable submerged break-
water CDE is placed on sea bed with wave-
side depth % and lee-side depth &' as shown
in Fig. 5. In this case, fluid region is di-
vided into four regions by geometrical surface
AE and BC. The potential function ¢,ix, 2],
@olx, z) in the first and fourth regions (I,
{(IV) are the same as Eg. (4.1) and (4.5).
Those in the second and third regions (II),
(III) are denoted by ¢ and ¢y, and on the
boundaries are by &%, ¢, &'%, @#'" and
o, ¢! as shown in the figure. Then, the
Green’s identities for the second region are
written as follows:

Fig. 5. Definition Sketch for Permeable Sub-
merged Breakwater
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where Fii, #), Gip, ¥) and F'{i, 5), G'lg, 5) are given by Egq. (4.20) and (4.30), respectively.
The Green's identities for the third region are provided as follows:

b [3y+ EX0 . 1 g
2L s+ 2 _ ¢ (4)
EXw EET! e{ﬁq"‘f-‘-ﬁ(z]}
o F9( ) =0 SEESE A (7.5)
g } (=
=1 o - i:l,.._.Nz (?‘EJ

Solving Eq. (7.1)~(7.6), simultaneously, potential functions on the boundaries are determined,
from which A, Aw, By B in ¢ lx, 2} and ¢glx, 2} are calculated by Eq. (4.11) (4.12) and
(4.21) (4.22). Wave transformations are calculated in the same way as Eq. (4.38), and the

horizonal and wvertical wave forces F, and F. for the submerged breakwater are calculated
as follows

N,

| 2
=0 A= I
(7.7
| F. — -‘.1‘ r.ait:l[}."u. 454 g .|E* qﬁ(“{j] dE.f i
| [ = : h
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VII Caleulations and Results

(1) Permeable breakwater with sloped-faces

We consider four types of cross-sections
as shown in Fig. 6 (a) (b) ()} {d). In the
first three types the width of breakwater at
still water level B is equal to the water
depth & and the slopes of both faces are
1:1.5. The type A is the case when above
cross-section is placed on the constant water
depth . The type B is the one with fore-
side depth & and rearside depth 0.5h. The
type C is the case when the hreakwater
has an impermeable core whose face-slope
is 1:1.5 and whose upper surface of width
0.6h is at the depth of 0.4h from still water
surface. The last type D has the width
B=1.6h and side slope 1:1.3.

The number of calculation points on each
boundary line is shown in the figure. In
calculations, the series terms in Eq. (4.1) and
4.5} are taken from m=1 to m =9 and from
#n=1 to n=09, respectively. The porosity ¥
is taken as 0.5 and coefficient of resistance
#fc as 1.0. For type D, the case when
V=04 and #/s =05 is also calculated.

Fig. 7(a) shows the calculated reflection-,
transmission- and energyv loss-coefficient K.
K, and K for tyvpes A, B and C. From
these figures, it is found that for wawves
with «*h/g larger than 1.5 there is almost
no difference among calculated values for
the three types but for waves with «®h/g
smaller than 1.5 appears some difference.
Due to the effect of bottom slope in type B
and of the core in type C, the reflection
coefficients for B and C are larger than
those for A, and the transmission coefficients
for them are larger or smaller than those
for A, according to the values of «* h/g.
From the energy loss coefficient, it is seen
that the wave absorbing ability becomes
lower in the order of A, B and C, according
to the cross-sectional areas of permeable
materials in three tvpes.

Fig. 7(b} is the calculated values for type
D, where it iz seen that for V=05 and
p/a=10 the reflection and transmission coef-
ficients are smaller than those for above

three tvpes, due to larger cross-sectional area.
For V=04 and #/¢=0.5, both of reflection
and transmission coefficients are larger than
when ¥F=10.5 and g/s=1.0.

According to the author's investigation on
permeable wvertical breakwater (1971}, the
decrease (or increase! In porosity ¥V causes
the increase (or decrease) of reflection coef-
ficient but does not so largely affect the
transmission coefficient, while decrease (or
increase) in resistance g's causes remarkable
increase (or decrease) of transmission coef-
ficient but does not so largely affect the re-
flection coefficient. In the same way as
above, it is considered that the decrease of
porosity V' from 0.5 to 0.4 results in the
increase of reflection coefficient and that of
resistance g/ from 1.0 to 0.5 causes the
increase of transmission coefficient.

In the figure, the measured values for
incident wave steepness Hy/L==003 hy the
experiment of Hattori and Sakai (1973) with
the same cross-section as the type D are
plotted for reference. In their experiment,
water depth & 1s 38.1 cm, width of break-
water at still water level B is 614 em and
breakwater model is made of 7893 cm
motar blocks and the porosity is 0.5. The
calculated values disagree with experiment
for large +*h/g.

In order to express reasonably the tendency
of K, and K, in relation to o® h/g, it is
necessary to present the numerical values
of V and s/s as functions of «®h/g. Sollitt
(19720, Madson (1973) and others estimated
the value of #'s by means of stationary flow
resistance and of the Lorentz's equivalent
work assumption in porous material.  But,
in addition, the porosity 7 including the
effect of virtual mass coefficient should also
be estimated in any wav. However, such
an estimation for V¥V and a/c are not wvet
established at present.

After the author's investigation (1971), it
seems that the reasonable value of u/s is
about 1.0 for «® h/g=1.0, lager than 1.0 for
s h/g<1.0 and smaller than 1.0 for o*h/g>
1.0. And V is to be taken as smaller than
actual porosity. In the calculations of this



¥V and u's are kept constant inde-
f on ¢° h/g, for convenience. (It
be noticed that breaking of waves on
-face should depress the reflection and
mission but such an effect is ignored

he wave height distribution around the
water of tvpe A, C and D are calculated
Eq. (4.38) and shown in Fig. 8a) (b) (c).
Is seen that in every type the low height
waves (node) appears on the foreside face,
Eﬂlen the wave height increases abruptly
by the water line of the face and de-
ases exponentially in porous breakwater.
is characteristic that the transmission-—
energy loss-coefficient for type A and
are nearly equal in spite of the remark-
g difference in breakwater width between
. This suggests that the wave absorb-
ability of permeable solped-face break-
er will not increase as the increase of
paliwater width bevond certain limit.

Also, it is clear that the reflection- and
transmission-coefficient of the type C are
dairly large for small ¢* h/g, compared with
‘those of type A, and so the wave absorbing

Analyses of Boundary-Value Problems for Two-Dimensional Water Waves
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ability becomes lower due to the existence
of impermeable core.

Fig. 9@akbiiciid} are the distributions of
velocity potentials around breakwater of type
A calculated by Eq. (2.5) (4.1) (4.5) for wave
of ¢® h/g=0.6, where full lines are equi-
potential lines and broken lines are ortho-
gonals to them. (a) is those at s£=0%, (b
is at sf=30", (c) is at af=60" and (d) is
at of=90°. Fig. 10(a)(b)(c)(d) are the same
as above for type C breakwater for wave of
° hig=06. From these figures we can see
the time historv of flow pattern in perme-
able breakwater and it is found that the
flow in porous body of type A breakwater
concentrates upwards at the still water level
through the body and the point of concen-
tration progresses as the wave crest appro-
aches to the breakwater. The flow pattern
for type C breakwater is similar to the above
but concentration of flow to the water surface
through porous material is more remarkable,
due to impermeable core. Such a figure of

flow pattern will be used effectively in inter-
pretation of breakwater disaster.

m3=24+l5f12:|’7
My=10, M3=10
i D=8, ND=38 st
¢ A NA y . ¢ B &_vc
T T T A A L S R A Y L rar,-.r.r;/.r-r.r,-.-'a'a'a-'

e} Type C

(d) Type D

Fig. 6. (a) (b) (e) (d) Calculated Cross-Section of Permeable Breakwater of Sloped Faces
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(ii) Permeable breakwater with vertical faces

We consider the case when the breakwater
of width BE=h and 2h are placed on the
constant water depth % or on the sloped
bottom of foreside depth k and rearside depth
0.5 k, as shown in Fig. 11, where the number
of calculation points is shown in the figure.
The calculated reflection-, transmission- and
energy loss-coefficient for V=05 and pla=
1.0 are shown in Fig. 12, where full lines are
for constant water depth and broken lines
are for sloped bottom. The calculated values

[a]

£
¥

'J,—’Br.-'."-".‘ E.l'.-".-"

Fig. 11, Calculated Cross-Section of Vertical-Face
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Fig. 12. K, K, and K, for Vertical-Face Break.
water

for the former one are in perfect agreement
with those by the method of continuation of
velocity potentials by the author (1971 It
is clear that the reflection— and transmission
coefficient for breakwater on sloped bottom
are larger and energy loss coefficient is
smaller than those for the breakwater on
constant water depth, due to the reflection
by sloped bottom, the increase of shoaling
coefficient and the decrease in cross-sectional
area in the former.

(i) Permeable seawall with wvertical- or
sloped-face

Consider that permeable seawall whose
width at still water level B is equal to the
water depth !k or to 2k and whose slope of
the face is 1:0 (vertical), 1:1 or 1:2 is
placed in front of vertical impermeable wall
and on the sea bed of depth &, as shown
in Fig. 13. The ecalculated reflection- and
energy loss-coefficient for V=05 and w»/v=
1.0 are shown in Fig. 14, where full lines
are vertical face, broken lines and dotted
lines are for slope 1:1 and 1 : 2, respectively.
The full lines for wertical face agree with
the author's results (1971) by the method of
continuation of velocity potentials.

In case of vertical face seawall, the re-
flection coefficients decrease remarkably as
width B becomes wider for small % h/g but
they asyvmtote independently on the width
B to a certain value (0.35) for large s* h/g.
In seawall of 1:1 sloped-face, the reflection
coefficients decrease in the similar manner
to the above and they asymtote to another
constant value (0.22) for large o h/g. While
for seawall of 1:2 sloped-face, the reflection
coefficients are larger than those for 1:1
slope as a whole, fluctuate rather irregularly
with the change of ¢ h/g and tend higher
values than those for above two seawalls
for large ¢* h/g. And the effect of width
B to the reflection coefficient is small for
every o h/g. These facts suggest that when
the slope of the face becomes too gentle,
the fluid motion does not penetrate suf-
ficiently inte the porous material, so that
the energy dissipation is depressed.

Fig. 15 shows the distribution of wave
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height around seawall, from which it is found
that the water surface fluctuation along the
impermeable rear wall in 1:1 slope seawall
is larger than that in 1:2 slope seawall,
which means the fluid motion in the former
iz more active than that in the latter. (It
should be noticed that the breaking effect
of waves on sloped-face is ignored here.)

{iv) Underwater slope, heach profile and

submerged breakwater

The calculated reflection and transmission
coefficients for underwater slopes where the
depth varies linearly from k to gh (1=
in the horizontal distance & and 2k to the
direction of wave progress are shown in
Fig. 16 for ¢=0.25, 0.50 and 0.75. It iz seen
that the reflection coefficient becomes small
for gentle slope, as expected. The calculated
wave height distribution on beaches are
shown in Fig. 17{alib)ic), where (a) is the
distribution for beach profile formed by 1:1
slopes at both ends of flat shelf with depth
0.5k and length 24 continued from the
constant water depth &, (b} iz the one for
the similar profile to above excepting the
length of the flat shelf with length 3k and
ic} is that for the profile with 1:2 slopes
at both ends of the shelf with length 3h.
Every distribution has loops and nodes ac-
cording to the values of #®h/g and wave
height on flat shelf becomes somewhat larger
than twice the incident wave height and the
largest wave height of about 2.5 times the
incident wave height appears for ° h/g=0.8
in Fig. (a), for +* h/g=0.5 in Fig. (b) and
for ¢* h/g==0.2 in Fig. (c). These features
are, of course, dependent not only on the
length of shelf but also on the angle of
slope.,

Fig. 18 are the reflection coefficients for
impermeable submerged breakwater whose
cross-section is trapezoid of bottom width B,
upper width B' at the depth gk (1>g>0).
Fig. (a) iz the case for B=h, B =06k,
Fig. (b} is for B=15hk, B'=09k, and Fig.
{(ci is for B=2k, B'=12h. In every case,
g is taken as 0.3, 04, 0.5 and 0.6. In these
figures, it is notiable that non-reflection ap-
pears depending on the width and depth of

upper face of the trapezoid. These features
are similar to those of rectangular submerged
breakwater calculated by the author (1971).%*%
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X1 Conclusions and Acknowledgement

It is made clear that as long as the fluid
motion is of small amplitude with velocity
potential, the Green's identity formula vields
a svstem of geometrical linear relationships
between boundary values of ¢ and ¢ and
the mechanical boundary conditions vield
another system of linear relationships be-
tween them, from which ¢ and & on the
boundary are determined uniquely. Then,
Green's theorem provides the velocity poten-
tial wholly in the fluid region.

In above example of calculations, the fluid
regions are bounded by straight lines, but
this proposed method is preferably applied
to the fluid region bounded by irregular
curves. And also, even if the boundary is
in oscillatory motion, this method is easily
applied.

The anthors express heartfelt thanks to
the cooperation in computation work of Mr.
Akinori Yoshida, the graduate student and



Analyses of Boundary-Value Problems for Two-Dimensional Water Waves 109

3

N i, _n-;yg biky
Ffi.lz D I . -8 g

Fig. 17. Wave Height Distribution on Beach Step



110 T. Limua and C, R. Cuou

ors — — ]
fir ah] - 08n-

h
05— —— . ! |

AR | R
/ ge3] 04 |

! N
Q2L fﬂ'sg \‘_Y\ -
s e | —
oLV a P o
05 10 15 0 g 30
(a)

075 ; : f
Ke %] +ash— o
Q8= i. Fi L |

g=03 [ F— 15h —-=y
l}
& |
/Ul | |
(VL] SR, | A GLEL . U !
TN — ]
...... i ot
a B e
_ ehig 30
075
Kr
0.5
025 _
a = !"-
othig 20

Fig. 18. K, of Impermeable Submerged Breakwater

Mrs., Yasu Yumura, the research assistant
in the Department of Hydraulic Civil Engi-
neering.

(1)

(3

(4]

(5)

(6]

i)

(8)

k=)

(1w

{11

(12)

Reference

Ijima, T., ¥. Ezuchi and A. Kobavashi (1971):
“Investigations on Permeable Breakwater and
Quaywall,” Proe. 18th Japanesze Conf. on
Coastal Eng. JS.CE. (In Japanese)

Sollite, C. K. {1872): “Wave Transmission
through Permeable Breakwaters.,” Proc, 13th
International Conf. on Coastal Eng. AS.CE.
MceCorquadale, J. A, (1872} Wave Energy
Dissipation in Rockfill.” Proe. 13th Interna-
tional Conf, on Coastal Eng. AS.C.E.
Miche, M. (19443 “ Mouvements Ondulatoires
de la Mer en Profondeur Constante ou Decro.
isante,” Annales des Ponts et Chaussées,
Vol 14, pp. 151~ 164

Friedrichs, K. O. (1948): “ Water YWaves on
a Shallow Sloping Beach.” Comm. Pure and
Applied Math, Voll, pp. 108~.134

Issacson, E, (19500:" Water Waves on Sloping
Bottom." Com. Pure and Applied Math, Vol,
3, pp. 1~32

Mewman, J. N. (1963): * Propagation of Water
Waves over an Infinite Step.” JLF.M. Vol. 23,
Part 2

Miles, J. W. (1967): *“Surface Wave Scatter-
ing Matrix for a Shelf.” J.F.M. Vol. 28, Part 4
Ijima, T. (1971%):" Analyvses and Application
of Boundary-Value Problems in Recent Wave
Theories.” Summer Seminor on Hydraulic
Eng. J5.CE. {In Japanese)

Hattori, M. and T. Sakai (1973):" Experiment
on Wave Transmission through Rubble Mound
Breakwater.,” Proc. 20th Japanese Conf. on
Coastal Eng. J5.C.E. (In Japanese)
Madesen, O. 5. (1974): *Wave Transmission
through Porous Structures” Proc. ASCE.
Vol 100, No. WwW 3

Ijima, T. and T. Sa=zali ({1971%%): “ Analysis
on Submerged Breakwater,” Proe. 18th Japa-
nese Conf. on Coastal Eng. J5.CE,

(In Japanese)



