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WAVE-INDUCED OSCILLATIONS IN
HARBOURS WITH DISSIPATING QUAYS

Chung-Ben Chou!
Wen-Yu Han?

ABSTRACT

A method based on a boundary element method was described for predicting
wave height distributions in a harbour of arbitrary shape and variable water depth.
Effects of partial reflection along harbour and breakwater boundaries were considered
by involving an energy dissipation coefficient in boundary conditions. Numerical
results on wave heights within a rectangular harbour were presented for cases of fully
absorbing, fully reflecting and partially reflecting boundaries. A realistic harbour
geometry was selected for trial computations, and results of the computations were
verified through hydraulic model experiments.

Keywords: harbour osecillation, boundary element method, energy dissipating co-
efficient

I. INTRODUCTION

One of the major ohjectives in harbour engineering is the maintenance of a rel-
atively undisturbed water surface within regions of interest. The most effective way
to achieve this is to reserve some area in a harbour for natural dissipation. However,
almost all the harbours, especially the fishery harbours, in Taiwan have insufficient
space to allow for wave energy dissipation. An alternative way is to dispose the verti-
cal dissipating quays in harbours, as many examples are found both in Taiwan and in
Japan. However, the choice of the most suitable location and length of the dissipating
structure in a harbour is rather problematic. To solve this problem, engineers have
usually relied on model experiments in the past, but numerical methods have also
been developed. With increasing speed of performance and lowering cost for acqui-
sition of modern computers, numerical analyses seem to provide a potentially more
economical alternative than model experiments,

Many investigators have studied various aspects of the harbour oscillation problem.
Miles and Munk (1961) used a point source method to analyze harbour oscillations
associated with radiation effects that expand from harbour entrance to offshore. They
found the phenomenon of harbour paradox. Ippen and Goda (1963) used Fourier
transformation to analyze a rectangular basin with impermeable vertical wall. Hwang
and Tuck (1970) used a boundary integral method which involves the distribution
of wave sources along the harbour boundary to calculate oscillations in harbours
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of constant depth and arbitrary shape. Lee (1971) applied Weber's solution to solve
Helmholtz equation and analyzed harbour oscillation of arbitrary shape with constant
water depth. Chou and Lin (1986} used a boundary element method to analyze wave-
induced oscillations in a harbour of arbitrary shape with rigid quays in variable water
depth.

The above studies, however, suffer some deficiencies; in other words, they are appli-
cable either to complete reflection or to zero reflection at the harbour boundaries. In
fact, reflecting boundaries are not always fully reflecting. In order to treat this prob-
lem, Berkhoff {1976} used mild-slope equation involving a partial reflection condition,
that is, d¢/dn + akd = 0 (where n is the local coordinate taken normal to a bound-
ary and o is the complex transmission coefficient and k is the wave number), to solve
wave diffraction and refraction problem in harbours with arbitrary reflective proper-
ties. Isaacson and Qu (1990) assumed that the partial reflection has no influence upon
the form of a reflected wave, and related the transmission coefficient a= a; +ias) to
the reflection coefficient Kr, the phase shift 3 associated with the reflection, and the
angle -« that the incident wave train makes with the wall. Unfortunately, the phase
angle 3 and the incident wave direction -+ are difficult to determine. For special cases
of 3=0 and =0, they indicated that oy =0 and az = (1 — Kr}/(1 + Kr).

Chou and Lin (1989) also applied a boundary element method to analyze oseil-
lations in a harbour of arbitrary shape with constant water depth. The boundary
condition at an arbitrary reflecting boundary involves an energy dissipating coeffi-
cient a(= /1 — Kr?) based on the theory of energy conservation. In their study,
the phase lag between incident and reflective waves was considered in the process of
computing potential functions, where effects of material of dissipating structures were
not included.

In this paper, an extended model for variable water depth will be presented. For
verification, model experiments were carried out and compared with numerical pre-
dictions.

II. THEORETICAL ANALYSIS

Figure 1 schematically shows a harbour configuration under consideration. A
Cartesian coordinate system is employed, the origin of which is located at o with
the z-axis vertically upwards. As shown in the figure, the flow field is divided into
two regions by a pseudo-boundary surface I';: Region I is an open sea region with
constant depth, and Region II is a harbour basin bounded by T'y and the harbour and
breakwater boundaries, with variable water depth. The presence of a harbour and
breakwaters affects waves in both the regions. However, if the pseudo-boundary I'; is
sufficiently far away from the structures (by 0.5L or more, where L is incident wave
length), wave scattering due to them can be neglected in Region L.

Usual assumptions of the fuid being inviscid and incompressible and the flow being
irrotational are adopted here. We consider linear waves, having angular frequency
g(= 2r/T, T is the wave period) and amplitude ¢,, incident from the open sea at
an angle of w against the x-axis. Fluid motions in hoth the regions will then have
velocity potentials, $(x, y, 2;t), in the following form:
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Fig. 1 Definition sketch.
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where g is the gravitational acceleration, and ¢(x., y, z) must satisfy the Laplace equa-
tion
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2.1 Potential function in Region I
Since wave scattering due to depth variation is neglected in this region, the resul-
tant potential function for Region I, ¢,{x,y, z), can be expressed as

dolx, ¥, 2} = { (= ¥) + F*(z, y}}% (3)

where h is the water depth, k is the wave number (o?h/g = khtanhkh), f°(z,y)
is the potential function of the incident waves, and f*(r.y) is the potential func-
tion representing combined reflection and diffraction of waves caused by the harbour,
breakwater and bottom topography.

For sinusoidal incident waves, the corresponding water surface elevations can be
expressed as

Gilz,yit) = (peoslk(rcosw + ysinw) +ot], (0<Sw<mw) (4)
The potential function of the incident wave f°(z,y) is then given by

felz,y) = —i - exp[—ik{x cosw 4 ysinw)] (5)

Substituting Eq. (3) into Eq. (2), we obtain the potential function for f*(z,y), which
satisfies the Helmholtz equation of the following form:



% + ﬂa% +Ef=0 (6)
Region I is bounded by the pseudo-boundary S, coast lines AB and GH, and
far-field boundary. Since the coast lines AB and GH are located in the open sea area,
disturbances caused on them by the harbour and breakwater may be negligible, the
potential function f*(z,y) being zero on these lines. On the far-field boundary, where
the Sommerfeld radiation condition must be satisfied, f*(x,y) should also be zero.
Applying Green’s function, the potential function f*{x,y) for any point in Region 1
can be calculated from the following integral equation:

of*(z,y) = j;l [GH{,{”H:R}) %f’[f:ﬂ} - .f‘{&’?]'% (4

HD{”[J;R})] ds (7)
where f*(£,n) is the potential function specified by the geometric condition of the
boundaries in Region I, 8f*(£,n)/8v (= J ) is its normal derivative with v the local

normal coordinate to the boundary taken outwards, Hy'' is the zeroth order Hankel

function of the first kind, and R = [(z — £)? + (y — 7)?]"/? is the distance between a
point under consideration and the boundary. The factor ¢ equals to unity within the
boundary, but will have a value of 1/2 on boundaries.

In the numerical analysis, the boundary 5y, where ¢ = 1/2, is discretized into M

segments, each having a constant element. Equation (7) is then rewritten in a matrix
form as

{F}=K"{F} (8)

where

(K*] = [H*]7'[G"]

{Fl=4
{F'}={a;,}=?} (G=1,M)
(H"] = Hj;

o [ By (i # ) St
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.- [ 2 (igm

H; = fn 5 ( 7Ho [kle) ds
: i on(1)

Gij = ‘/l:-r EHI:II {kR}dﬁ

in which {F*} and {F } are the potential function and its normal derivative on the
pseudo-boundary Sy, and [K*] is a coefficient matrix related to the geometric location
of Sj i



2.2 Potential function in Region II

Region II with arbitrary water depth is a closed three-dimensional domain bounded
by the pseudo-boundary I'y, the free water surface s, the quays or breakwaters I'y
and an impermeable uneven sea bed 'y, It is stressed that I's is assumed to have
an arbitrary reflection coefficient. According to Green's second identity law, veloe-
ity potential ¢(x,y,z) at any point within Region Il can be determined by velocity
potential on the boundary and its first normal derivative as

o) = [ [”%’j‘” (= R) - 06O (ﬁ)] iAo

where B = [(z — £)* + (y = n)* + (z = {)*]Y2. As before, ¢ is unity for points inside
the region and is equal to 1/2 on the boundaries.

To proceed with numerical calculation, surfaces of the boundaries I'y through Iy,
are divided into N; to N, discrete segments with constant elements. The length of
each segment on ['; is usually taken as L/16, or less, and that on I'y is taken as L/8,
or less, where L is the incident wave length. For the case that ¢ = 1/2, Eq. (9) is
readily expressed as

{¢} = [K]{¢} (10)
where

[K] = [H]7'[G]

{¢}=¢j

{3}={§}=% (j = 1Ny + Na+ N3+ Ny)

[H] = Hy; (4,7 =1,N; + No + N3 4+ Ny)

.. § My (1 # 7)
i {Hij+% (i=3)
{G}ZGU

in which {¢} and {¢} are the potential function and its normal derivative on the
boundaries I"; through Ty, and [K] is a coefficient matrix related to the geometry of
the boundaries.

2.3 Boundary conditions

The boundary conditions required for the case under consideration are summarized
as follows:
(1) Free surface condition

Under uniform air pressure, the boundary condition on the free water surface is
given as
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{2) Boundary condition on the impermeable sea bed

The flow is zero in the normal direction to an impermeable sea bed, that is,

o=0 (12)

(3) Boundary condition on the pseudo-boundary

Requirement of mass and energy flux continuity between Region I and Region 11
at the pseudo-boundary I'y leads to the following expression:

ED(£1 !"II,Z:I =E[£:ﬂ1z} (13}
dol€,m, z) = ¢(€,m. 2) (14)

Substituting Eq. (3) into Eq. (13), multiplying both sides by coshk(z + h) and
integrating from —h to 0 with respect to z, we obtain the following relation:

cosh® k(z + h)

e

0 0 .
f B(£,m, 2) cosh k(z + R)dz = f FEm+T €l
-k h

By dividing the surface of the pseudo-boundary T'y into N segments vertically and
M segments horizontally, the above equation can be rewritten in a discretized form
as

=k Ilﬂ b — —0
J(m) = Nosimhih ;rﬁ{&,m,i&}cvsﬁ k(z; + h)Az; — F (&,m)

(=1,2,---, M) (15)

where Ny = (1/2)(1 4 2kh/ sinh 2kh).
Substituting Eq. {3) into Eq. (14), we obtain

cosh k(z + h)
cosh kh
(i=1,2--,MxN) (16)

ﬁb{éii i, 2) = [fu[.‘girﬂt'} + .ir*('ih"h:l]

and further substitution of Egs. (8) and (15) yields the following matrix expression:

{61} = [RI{F° — K*F"} + C[RIK"|[Q{$: } (17)

where C = k/{ Nysinh kh), the subscript 1 denotes functions on the boundary I'y, and
[R] and [Q] are coefficient matrices given by
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cosh kh
: 0
cosh k(z1, + h)
cosh kh
[R] = (18)
0 cosh k(zm1 + R)
cosh kh
cosh k(zmn + )
L eosh kh
Q] =
cosh k(z1 + h)Az ... coshk(zi, + h)Az,
cosh k(zm1 +h)Az ... coshk(zmn +h)Az,

(19)

Equation (17} expresses the relation between the potential function ¢(x,y, z) and its
derivative on the pseudo-boundary T';.
(4) Boundary condition on a quay or breakwater

Assume the quay or breakwater boundary I'y is impermeable and have an arbitrary
reflection coefficient K. Since waves are reflected only partially, these structures
can be treated as having conceptually an energy dissipation coefficient o, which was

defined by Chou and Lin (1989) as
a=1\1-K>? (20)

The boundary condition on I' is now conveniently expressed as

WL, n, ) = tkad (£,1,0) (21)
2.4 Equation system
To facilitate substitution of the boundary conditions, we first rewrite the governing
equation, Eq. (10), into the following form:

[#:] = [Kislles] (5.5=1,4) (22)
and the unknown functions on the boundaries 'y through '3 are obtained from

[# = [Kyslle:] (5 =1.3) (23)
Substitution of Eqgs. (11), (17) and (21) into Eq. (23) and a little algebra lead to

- 2 :
(K1 — CRK*Q) :?Km ikakK )y ¥ R[F° - K*F']
K CKp-1 ikeKz | |é2|= 0 (24)
Ka Ky ikaKs —I] L9 ¢
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Fig. 3 Reflection coefficient of dissipating quay.

By solving the above equation, the derivative of potential functions on the boundary
I'y and the potential functions on boundaries I'; and 'y are obtained. The wave
height ratio, Ky, defined as the ratio of the wave height in Region IT to the incident
wave height, can be caleulated from

Ka = |¢a (25)

III. REFLECTION COEFFICIENT OF DISSIPATING
STRUCTURES

To proceed with the numerical analysis, the energy dissipation coefficient o in Eq.
(21) must be determined. In other words, the reflection coefficient K, in Eq. (20)
must be found empirically. This was done through experiments in a two-dimensional
wave flume as schematically shown in Fig. 2. The wave flume has dimensions of 50 m
in length, 1.8 m in width and 1.5 m in depth. A programmable wave generator of
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piston type is installed at one end of the flume. A dissipating model structure with
a void ratio of 0.36 was located 40m away from the wave generator. The incident
wave heights in the experiments ranged from 4 to 6 em. The method of Goda and
Suzuki (1976) was employed to obtain the reflection coefficients as shown in Fig. 3,
where the abscissa is scaled with o2k /g and the ordinate with K. The dotted curve
shows the best fit of the experimental data for the least square. Reflection coefficients
for different frequencies determined from this empirical function will be used in the
subsequent computations.

IV. NUMERICAL COMPUTATIONS

4.1 Square basin with constant water depth

As stated before, the main objective of this paper is to introduce the energy
dissipation coefficient in the boundary condition. Computations were first carried
out for a square basin with a width of 10k (h is the water depth of the open sea)
and an opening width b = 5h at the center of the basin, as shown in Fig. 4. The
same dissipating quays as those in the two-dimensional wave flume experiment were
assumed and uniform water depths in both the Regions I and II. Wave scattering due
to bathymetric condition was thus eliminated.

In the numerical analysis, the boundary surfaces were dwlded into 1056 discrete
areas with constant element (N;=104, N2=720, N3=52, N;=180, and M=2). Re-
lationships between wave heights and frequencies at the 4 locations A, B, C and D
indicated in Fig.4 were calculated for incident waves propagating perpendicularly to-
ward the harbour entrance. The coordinates of these locations are A[0.25h, —0.25h),
B(0.25h, —5.25h), C(0.25h, —9.75h) and D(4.75h, —5.25h). Distributions of wave
heights were also calculated for dimensionless frequencies a2h/g=1.206, 0.537 and
0.302 (wave period T=1.0, 1.5 and 2.0 sec). Table 1 shows the conditions of these
computations.

4.2 A Real Harbour
Computations were also performed for an example of the Patosn fishery harbour
built 3 years ago in the northern part of Taiwan. The layout and topography of
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Table 1 Cases of square basin experiments.

51 | 82|83 Remarks
case | » " * » : impermeable guay
case [1 o o o o ; dissipating quay
case III | = o x
case [V o * o

the harbour are given in Fig. 5. Quays and breakwaters of this fishery harbour
are dissipating structures (PERFORCELL), whose reflection coefficient is estimated
approximately at 0.75, the energy dissipation coefficient o being 0.661. In the numer-
ical computation, water depth larger than 40 m was regarded as constant, and the
boundary surfaces were divided into 1988 discrete segments with constant elements
(N1=152, Nu=1329, N3=176, N;=331, and M=2). Distributions of wave heights were
calculated for incident waves propagating from 23.5° north-northeast (w = 66.5%) to-
ward the harbour entrance with dimensionless frequencies of 2h/g =2.518, 1.611 and
1.169 (T=0.8, 1.0 and 1.2 see).

V. LABORATORY EXPERIMENTS

5.1 Square basin with constant water depth

Experiments were carried out in a three-dimensional wave basin, 30 m long, 25 m
wide and 1 m deep, as shown in Fig. 7. The programmable wave generator is capable
of generating regular and irregular waves. Water depth was kept at 0.3 m throughout
the experiments. The incident wave heights ranged from 4 to 6 em. Water surface
displacements were measured with 6 capacitance-type wave gauges aligned at 20 em
Spans.

In the experiments of case I in Table 1, the nondimensional frequencies of incident
waves, o-h /g, were varied in the range between 0.25 and 3.0 (T=2.2 to 0.63 sec), and
surface elevations at the 4 locations A, B, C and D were measured for 2 to 3 times.

In the subsequent experiments, waves with #2h/g =1.206, 0.537 and 0.302 were
used. Wave heights were measured at various locations in the harbour, and contour
maps for wave height distributions were drawn in terms of the wave height ratio K,
that is, the ratio of measured wave height to incident wave height.

5.2 Patosu fishery harbour

Another series of experiments were conducted using a physical model of the Patosu
fishery harbour with a scale of 1/100. The water depth was 0.4 m in region I. The
direction and period of incident waves were exactly the same as those in the numerical
computations; the wave heights were in the range from 4 to 6 em.
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VI. RESULTS OF COMPUTATIONS AND EXPERIMENTS

Figure 8 shows comparisons between the calculated and measured wave heights
at the locations A, B, C and D for case II with dissipating quays. Agreement be-
tween numerical solutions and experiments can be quantified using deviation v =

\/ ¥ (Anum — }v..,,p}z," (n — 1), where A,ym and Ay are the computed and measured
wave height ratios and n is the number of data. The deviations obtained were
v = 18.98%, 17.15%, 19.25% and 14.84% for the locations A, B, C and D, respec-
tively, every value being less than 20%. It is rather surprising to see a fact that a single
coefficient was successfully used to represent a complicated process of wave dissipa-
tion. It seems, therefore, justifiable to draw a conclusion that the energy dissipation
coefficient used in the present model is a reasonable approximation.

Figure 9 shows computed wave height ratios at locations A, B, C and D for cases
I through IV. From these figures, the following phenomena can be detected: (1) In a
harbour with impermeable quays (case I), local wave heights largely Aluctuates with
frequency of incident waves, and there appear apparent resonances. (2) In harbours
with dissipating quays (cases II to IV), oscillations are apparently reduced, especially
in case II.

Figures 10 through 12 are contour maps for computed and measured wave height
distributions in the square harbour for incident waves with angular frequencies of
a?h/g =1.206, 0.537 and 0.302, respectively. We again see from these figures that the
wave heights in the square basins with dissipating quays are apparently reduced,
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Fig. 13 Wave height distributions in Patosu fishery harbour (T'=0.8 sec).
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(a) Computation

(b) Experiment

Fig. 14 Wave height distributions in Patosu fishery harbour (T=1.0 sec).
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Fig. 15 Wave height distributions in Patosu fishery harbour (T'=1.2 sec).
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Table 2 Comparison between the computed and measured wave height ratios,

K
Loca- Corrdinate T=0.8 sec T=1.0 sec
tion Computation | Experiment | Computation | Experiment
E (0.25h, —1.75h) 0.4865 0.59 0.4882 0.63
F (—5.75h, —3.75h) 0.1625 0.16 0.2206 0.10
G (—3.25h, —4.75h) 04618 0.46 0.4304 0.29
H (0.75h, —7.25h) 0.0810 0.13 0.059491 0.12
I (—4.75h, —7.25h) 0.2658 0.30 03050 0.27

especially in case II. The predicted tendencies of wave height distributions are well
confirmed on the basis of the experimental data.

Figures 13 through 15 give contour maps for computed and measured wave height
distributions in the Patosu fishery harbour for incident waves with periods of T=0.8,
1.0 and 1.2 sec, respectively, where broken lines indicate the extent of wave height
measurements. In general, similarity between the results of computations and exper-
iments is reasonable,

Table 2 shows computed and measured wave height ratios at 5 measuring points
(locations E through I in Fig. 6) in the Patosu fishery harbour model. A little de-
viation found in the comparisons may be ascribed to the phase lag depending on
the material of dissipating structures, which is not considered in the computations.
The results, however, are in satisfactory agreements, demonstrating that the present
numerical model provides an useful tool for engineering purposes.

VII. CONCLUSION

Effects of dissipating quays and/or breakwaters have been modeled by introduc-
ing the energy dissipation coefficient in the boundary condition. Comparisons of
caleulated and measured wave heights under simple and complicated conditions were
shown. Reasonable agreements observed for the simple cases support the use of this
coefficient in numerical modelling. Usefulness of the present numerical model for en-
gineering purposes was demonstrated through its application to water oscillations in
the Patosu fishery harbour.
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