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Generation and Deformation of Solitary Waves

Chou Chung—Ren" and Shih Ruey—Syan" "

Abstract -— Base on the Lagrangian description and finite differencing of the time step, the generation,
propagation and deformation of solitary waves are simulated numerically by means of boundary element
method. An algorithm to generate waves with any prescribed form is also implanted in the scheme, but in
this reseatch, solitary waves are studied. The numerical mode is first verified by studying the case of a soli-
1ary wave impinging against a vertical wall. Time histories of evolution of a soliton running up on a slop-
ing beach, as well as over a submerged obstacle are then presentied. Applications to scatteting problems
due to solitary waves progressing over a slope onto a shelf are aiso shown.
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1. Introduction

Numerical study of long waves in shallow water has become one of the most important in-
vestigations that have been developed by many researchers recently. Based on a set of approxi-
mate equations for long waves, the transformation of solitary wave progressing over a slope
onto a shelf including the scattering problem was first discussed in detail by Madsen and Mei
(1969), who compared the numerical results with some experimental data and obtained reasona-
ble agreement. Later, some numerical solutions of a variable-coefficient Kortéweg«de Vries equa-
tion are derived by Johnson (1972) in an attempt to describe the development of a single solitary
wave moving onto a shelf. Ouyama (1985) explored solitary wave set up on slope by boundary
element method. Also, with the application of the Lagrange-particle method, an explicit solution
of solitary waves propagating over an uneven bottom was then studied by Okamura and
Yakuwa (1987). With the boundary element method, Sugino and Tosaka (1990) analyzed the
generation, propagation and deformation of a solitary wave in a water tank with a gentle slope
by the mixed Eulerian-Lagrangian mehtod. Chou ef al. (1996} studied the deformation of soli-
tary waves in coastal zones with submerged obstacles by using the boundary element method in
the time domain.

In this study, problems associated with the generation and deformation of solitary waves
- are considered numerically by boundary element method. Based on the Lagrangian description
and finite differencing of the time step, a scheme to generate waves with any prescribed form is
implanted in the model. The stability of the model is then cross-checked by the constancy of
mass and energies. Furthermore, the scattering of a solitary wave due to a shelf is also discussed
and compared with the results obtained by Madsen and Mei, and good agreement is found.

2. Theoretical Analysis

As defined in Fig. 1, Cartesian coordinate system is employed, the origin of which is lo-
cated on the still water surface and the z-axis pointed positively upwards. The flow field is
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bounded by a pseudo- wave- generating boundary I'), a free water surface I, and an
impermeable: sea bed T, The fluid within the region is assumed to be inviscid and
incompressible, and the flow is irrotational. Fluid motion has a velocity potential @ (x, z; t) satis-
fying the following Laplace equation: '

—:r'l" 2 =0. (1)

pseudo: boundary

T free water surfacel2

;\\ﬁ

T

Fig. 1. Definition sketch.

2.1 Boundary Conditions
2.1.1 Boundary Condition of Pseudo Wave-Making Boundary I'y

The pseudo boundary, I'; is assumed to represent a wave-generating device: Although it is
clear that the paddles of any desired type can be simulated, a piston wave generator is assumed
for simplicity in this study. Requiring that the horizontal velocities of the pseudo wave-paddle
U (1) and fluid flow be continuous, we obtain the following relationship:

F=2C i, @)
ay

Waves can be simulated by selecting suitable input U (¢). In this study, solitary waves are
simulated, thus 7 () can be expressed as

Uly=x, + o+ sech’ [w(r — ¢ )] (3)
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where x, denotes the semistroke of the wave-making paddle and éﬁ is the wave height of soli-
tary wave to be generated.

2.1.2 Boundary Condition of Free Water Surjace

The atmospheric pressure on the free water surface is assumed to be constant, therefore, the
boundary condition can be obtianed from the kinematic and dynamic conditien as follows:

u=2% w0 (7
Dz _00
“TDr ez ®
Do 1 rp®y , @20V 7 _ -
D T8 3 [(%;) + (‘é‘;) ] =0 (9)

where D is the Lagrange differentiation, g is the gravitational acceleration and { is the surface
elevation.

2.1.3 Boundary Condition of Impermeable Sea Bed

From the fact that the water particle velocity normal to the impermeable seabed has to be
null, we have

oD _
Sl (10)

where v is the unit normal vector.

2.2 Integral Equations

According to Green’s second identity, velocity potential ® (x, z; ) at any point within the
region can be expressed using velocity potential on the boundary @ (£, »; £) and its normal deri-
vative 00 (&, n; 2} / dv as

1 oD (&, 1 ¢ |
D (x, 723 t)=§;Ir 1:—%?—” ln;——d)(rf,?’[; .r)aln;]ds (11)

where r = [(£ — x)* + {n— z)z]”z
When the inner point (x, z) approaches the boundary point ({’, '), due to its singularity,

the velocity potential @ (£, #”; £} can be expressed as
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el e m o, 1
7

@ (&, n's F» lni —® I)% ln—l—l‘;] ds (12)

hiere R = {’)2 n (?1 ,)2]1/2

In order to proceed w1th the numerical calculation, the boundaries I'; through I'; are di-
vided into N, to N, discrete segments respectively with lingar elements, and the above equation
can then be written in a discretized form as;

®, (& )+ ZI [0, G n 0 M, +0,,, G0 M, ]—ln—ds

/=1

Zj [@ ¢ oM, +0, (g,;_;,:)Mz]ln% ds (13)

1
o

where EJ, = 6‘1'] / ov, ajﬂ = /dv; M .M,  are the shape functions, M= (1-x) 7 2,

;-1— 1
M,= (l4+y) / 2; and y is a local dimensionless coordinate.
Eq. {13) can be expressed in the following matrix form:

[@] ={0] {®] (14)

in which [®] and [E] are, respectively, the potential function and its normal derivative on the
houndaries; and [0] is a matrix related to the geometrical shape of the boundary, where

— o0

[®]=0, (i=1~N) [6]=m,_=a‘—;
[01=[#+1""[G];
[H]=H, G, j=1~Nk [G]=G, G, j=1~N)k
T . 5 (15)
H i.j.={§” G (?:: J); [f] = unit matrix;
R th G2 g% U
2 { ; Gu={ ’

hu +km' G=1

A j M, 4111 dr, (16)
hff:ﬂr,. M,Z i dT, (17)
g‘::ijrj M, ln% dr, (18)
gfj=%jr len%dl‘. (19)
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The numerical scheme has been discussed in detail by Chou (1983).
To facilitate the substitution of the boundary conditions into each boundary, we rewrite
Eq. (14) as follows:

[ 1=[0,®,],  ij=1~3. (20)

2.3 Computational Procedure

2.3.1 The Initial Conditions
The initial conditions of each boundary are summarized as follows:
— The pseudo-wave-generating boundary I'

From the requirement of continuity between the horizontal velocity of the pseudo- wave
paddle U (1) and the fluid motion, we obtain:
1]

1=W=—*U(O) (21)
where superscript “0” denotes the beginning time of the simulation.

— The free water surface I',

Assuming that the water surface is initially at rest {¢=10), the velocity potential is therefore
null, i. e.

S
Il
o

[ R = |

(22)

-~ The impermeable sea bed I,

The velocity of fluid particles in the dlrectlon normal to the impermeable seabed is null,
thus we obtain:

QP =—2 &, (23)

2.3.2 The Finite Difference of Related Terms

The tangential derivative on the free water surface, (é@, / s), , c¢an be approximated
through the central difference equation:

ﬂs @, (LI s, D,
) _( )' 2;:1 +(ﬂ-SI,+1_ﬂSF.)' i lA it )' 2;’—1]

57 VAs
s"=A +A.5' " s”=..&si * ;s l’ (24)

i+l

As, =\/(x1+1 _xa-) +t(z,,, _21)2
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For the free water surface, we have the following relationship:

o, o0,

Gy P ieg, - Coip 1 s
2 = & cosf + & sinf} f

0z oy Js g

where B denotes the angle between the tangential direction of the free water surface and the
XxX—axis.

At the k—th time step, the profile of free water surface is expressed by (xk ; zk) . from Egs.
(7) and (8) the &+1—th time step can be expressed by (Jncjk i .z i 1) step where

' k
@
k+l= | 4 2 5
X % +(‘aax ) Ar; (26)
-k
y O
= B2 ) A 27)
0z

and Ar denotes the discrete time differencing interval.

From Eqs. (9) and (25), the velocity potential of the free water surface at the £+1-th time
step, @**! can be approximated through:

‘ @ D 2k
m’;”=mj+% [(’3352 )2+ (aav’) | Ar—gzttAr. (28)

Substituting Eqs. (2), {10) and the above equation into Eq. {20}, we can obtain the follow-
ing simultaneous equations:

k*] =4 i e
5 F =ik, o On_ 0 o, e
P, =0 -0, 0 6, —-I10,I| 9o, (29)
D, 0 _932 I O, 0 0O, _63 i

2.3.3 The Iterative Scheme

— By substituting Eqs. (21)~ (23) into Eq. (20), the initial values for the normal derivative
of the welocity potentials on the water surface, & 413’2‘ /@ v, the velocity potentials on the
pseudo-wave-generator, %, as well as the velocity potentials on the sea bed, ®%, can be obtained
respectively.

— Tangential derivative of velocity potentials on the water surface, & ©% / 8 s, is then cal-
culated using Eq. (24). '

— Surface elevations, (x*'', 2*™)), for the next time step can be obtained from Eqgs. (26) and
@n.

—- The velocity potentials on the free water surface for the next time step are given by Eq.
(28).
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— At the next time step, = k+1At, recalculate the coefficients of the matrix [(] in Eq.
(20), using the new profiles of the water surface obtained in procedure 3 and the new position of
the pseudo wave-paddle. '

— Substituting the velocity potentials on the new water surface obtained by procedure 4,
the horizontal velocity, U (¢), of the pseudo wave paddle given by Eq. (2), and the boundary
condition on the sea bed given by substitution of Eq. {10) into Eq. (29), the normal derivative of
velocity potentials, @5 / & v, on the water surface, the velocity potentias, fDi‘H, on the pseudo
wave paddle, and the velocity potentials, %', on the sea bed, for the time step t = k+1At can
be obtained.

— By repeating procedure 2 through 6, the time history for the generation, propagation
and deformation of waves can be simulated.

3. Numerical Results and Discussions
3.1 Time Histories of Wave Profiles

As shown in Fig. 2, the case of soliton propagating against a vertical wall is first considered
to verify the present numerical scheme. The incident wave height is &,/ A= 0.05. Fig. 3 shows
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Fig. 2. Time histories of solitaty wave propagation and run-up against a vertical wall.
Lo h= 0.5, t,= 50548 At = 1, /250, As = L/ 40.
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the profile of soliton prior to reflection. A comparison with the theoretical results given by
Boussinesq shows good agreement. Fig. 4 shows the time histories of the water surface for vari-
ous submerged banks fixed in front of the vertical wall, the layout of the bank being given at the
top of the figure. Fig. 5 shows the case of an inclined wall with a submerged bank of 4= 0.5 h in
height, the slopes varing from 1:0 to 1:5. The pseudo wave paddle is palced at a distance
Ly away from the origin of coordinates, where L is the effective wave length of the soliton de-
rived by (Nakayama, 1983):

0.08

073 e Boussinesq
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0.00 |
0

o/t

Fig. 3. Compariscn of the
profiles of solitary wave.
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Fig. 4. Time histories of solitary wave prepagating and running up
on verticai wall with various banks, (r= 820 Ar~ 1000 A?)
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Fig. 5. Profiles of solitary wave on various slopes with submerged bank.

L_, =9.5766 h éi (30)
0

In the calculation, the water surface is divided into 40 linear elements, with a discrete time
interval of Az = ¢,/ 250,

3.2 Stability Check of the Numerical Model

The conservative property of the present numerical scheme is cross- checked by the
continuuwm equations for mass and energy through the following formula:
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(31)

where M denotes the mass of fluid, E is the total energy, and T, and V are the kinetic and po-
tential energy, respectively.

Fig. 6 shows the results for a solitary wave. The mass above the water surface at rest is
equal to that of the area the paddle has swept; the total energy is equal to the energy transmitted
by the pseudo paddle, and it becomes constant after- the piston has stopped. These results are
compared with theoretical results:

i ]
(32)

From the comparison shown in the figure, it can be found that our results are consistant
with theoretical results.
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Fig. 6. Variation of mass and energy.
Eo/ h=0.05¢,= 50548, ¢ = ¢ /200, As = L/ 40.
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3.3 Scattering of a Solitary Wave

When a solitary wave propagates over a slope onto z shelf, the profile becomes longer pe-
aked as the wave amplitude increases with the distance the wave travels on the shelf, i, e. the larg-
er distance the wave travels on the shelf, the steeper the wave becomes; also, a hump appears at
the rear and gradually trails behind the main wave, The deformation of a solitary wave propa-
gating over a slope of 1:20 onto a shelf with a uniform depth of g = 0.5 h is shown in Fig. 7{a)~
{d), the layout of the shelf being shown at the top of the figure.

The development of wave profile at station A through D is compared with both the theoreti-
al and numerical results obtained by Madsen and Mei (1969), from which it can be found that
the results are consistent except for station D, where the wave profile is a little larger. Fig. 8

shows the time histories of a solitary wave propagating over a slope of 1:20 with a shelf of ¢ =
0.5 h, and Fig. 9 shows another case with a slope of 1:30.
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Fig. 7. Deformation of a selitary wave propagating over a slope onto a shelf.
o/ = 002, .= 31593, Ar = +./ 200, g/ s= 0.5 slope = 1:20.
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Fig. 8. Deformation of a solitary wave propagating over a slope onto a shelf.
Eo/ h=0.12,¢,= 3.1593, Ar = 1,/ 200, ¢/ 5= 0.5,slope = 1:30.

5. Conclusions

The algorithm in this research with the boundary element tcchnigque based on the
Lagrangian description and finite differential method to time is applied to analyze the problems
of generation and deformation of solitary waves. It is found that the numerical instability of the
present scheme will be present for slopes greater than 1:5 in the absence of a shelf, in the pres-
ence of a shelf, the stability is good when the water depth on the shelf is large, e. g., larger than

0.5 h. However, the results of the generation and deformation of waves indicate favorable
agreement.
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Fig. 9. Deformation of a solitary wave propagating over a slope onte a shelf,
Eo/ h=0.12,r,= 3.1593, At = {,/ 200, 4/ 5= 6.5, slope = 1:20,
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