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A NUMERICAL ANALYSIS OF MULTIPLE CYLINDERS

IN WAVE-CURRENT FIELD |
Chung-Ren Chou !
Shinn-Shan Yan ?

ABSTRACT

Effects of multiple cylinders in the wave-current field are studied by boundary
element method. The potential flow field is assumed to be composed of a steady
current potential and an unsteady wave potential. Dispersion relations affected by
the presence of the current is used to calculate the apparent wave frequency, that
means the Doppler effect is taken into consideration. The wave force on each cylinder
will be presented and the wave height distributions around cylinders will be also
shown.
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I. INTRODUCTION

In field, waves coexist and interact with current. The complexity of the flow field
increases when the dimensional effects of structures become non-negligible. Under
these circumstances, the characteristics of the wave field will be severely affected. Only
when all these three interacting factors were taken into consideration, a reasonable
understanding of this complicated reality can be achieved.

Intensive studies on wave-current interactions have been carried out by many
researchers, either theoretically, numerically or experimentally. The concept of radi-
ation stress was first introduced by Longuet-Higgins and Steward (1961). This idea
was later applied by Peregrine (1976) in the review article. Thomas (1981) studied the
interaction of linear waves with current both numerically and experimentally. Effects
on ship motions due to the combined wave-current actions were studied by Newman
(1978). Wave diffraction and radiation by submerged body in a uniform current field
were discussed by Grue and Palm (1985). Interactions between the current-wave field
and two-dimensional body in the free surface were studied by Zhao and Faltinsen
(1988). Baddour and Song (1990) described the interaction of linear waves and uni-
form collinear currents. The drift force on a slowly advancing vertical cylinder in long
waves was analyzed by Eatock et al (1990). Matsui et al. (1991) analyzed force
on a vertical cylinder in a wave-current field through perturbation analysis by using
potential flow theory.

Studies on wave-current interactions have usually based upon the assumption
that wavelengths will be affected while their frequencies remain unchanged (see, e.q.,
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Fig. 1 Definition sketch. -

Longuet-Higgins and Steward, 1961). The assumption can be questioned, since the
Doppler effect states that it is the wave frequency that will be affected by current
velocity. In this paper, current velocity is assumed to be small and wave is of small
amplitude type that can be treated linearly. The velocity potential in wave-current
field can be treated as composition of two components: a steady current potential
and an unsteady wave potential. The same assumption was also used by Newman
(1978), as well as Isaacson and Cheung (1993).

In this paper, it is assumed that near the cylinders, the current potential is af-
fected by the presence of cylinders, and non-steady wave potentials are modified by
the Doppler effect. In the following, variations of current velocities through the cylin-
ders are first determined using the two-dimensional boundary element method. The
dispersion relation as resulted from the Doppler effect is used to calculate the ap-
parent wave frequencies on the water surface. Using the apparent wave frequencies,
the wave potential of the wave-current-cylinders coexisting field can be estimated
through the three-dimensional boundary element method. The total potential of a
complicated wave-current interacting field is then recovered by combining calculated
wave potential with the steady current potential.

II. THEORETICAL ANALYSIS AND NUMERICAL SCHEME

As shown in Fig. 1, the Cartesian coordinate system o-zyz is used. The z-y plane
is located on the water surface with the z-axis positively upwards. Far away from the
cylinders, a pseudo-boundary I'; is assumed. Previous experience (Chou and Han,
1993) has shown approximately half of the length of incident wave will suffice for the
present purpose. With this boundary, the domain of interest is divided into two parts.
The region I is an open sea region, and the region II is a region around the cylinders.

The assumptions of the fluid being inviscid, incompressible and the flow being
irrotational will be adopted here. Flow in both regions will have velocity potential
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satisfying the Laplace equation. A uniform current with velocity U, intersects the
z-axis with an angle #, in the open sea region. We consider the small amplitude
~ waves having angular frequency o, (= 2x /T, where T is the period) and amplitude
(o, incident from the open sea at an angle of w, against the r-axis. Assuming further
that the Froude number F,(= U,/+/gh, where g is the gravitational acceleration, h
is water depth) based upon current velocity and the wave amplitude (, are all small,
the velocity potential of wave-current field ® can then be decomposed into two parts:
a steady velocity potential € due to current, and a wave velocity potential W
subjected to the Doppler effect,

¢ =3 + oW (1)
where both € and ®" satisfy the Laplace equation.

2.1 Steady Velocity Potential
(1) Current Potential in Region I
The potential for the steady current in region [ is a result of potent:a.l @° of the
current with velocity U, incident from open sea and the potential * arising from the
presence of the cylinders,
o =° +¢° (2)

where ° = —U,(z cos f, + y sin 3,) and the disturbed potential * should satisfy the
Laplace equation.
LT
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It is noted that, ¢* can be neglected far away from the cylinders. Applying Green’s

theorem, the potential *(z, v) in region | can be calculated by the following boundary
integral equation,

coen =g [ [P 0nl-peng (nl)]e @

where ¢*(£,n) and 8¢* (£, n)/8v(= F") are potential and its normal derivative with v
local normal ecoordinate to boundary taken outwards, and r = \/(z — £)2 + (y — n)%.
The factor ¢ is equal to unity within boundary, but will be 1/2 on smooth boundaries.
In the numerical analysis, the boundary I';, where ¢ = 1/2, is discretized into N,
segments with constant element. Equation (4) is rewritten in a matrix form as,

{¢'}={"} {7} (5)

=0 (3)
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where

{*P'} = ’F; 1 JI 1,2,,"_'.”] *:& . )
{7} =7 |

{1} = () o)

{h“} = h:} i £1j:j-121"’:N]

{g°} = g

? (6)
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hij = -2'-; ., 5 (lﬂ ;)dﬁ

oy x
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in which {y*} and {$"} are the velocity potential and its normal derivative on pseudo-
boundary Iy, and {k*} is a coefficient matrix related to the geometric location of I';.
The numerical scheme is discussed in detail by Chou (1983).

(2) Current Potential in Region II

The region II has a closed domain. It is bounded by the pseudo-boundary I'; and
the boundaries of cylinders I';. The current potential in this region, p'?), satisfies the
Laplace equation, can be determined by the following integral equation,

c ¢@(z,y) = [a’tp{z]{’ft 'l'] — (e, ﬂ]% (ln %)] ds (1)

where ¢(*) (£, ) and 8¢'?) (¢, n)/8v(= F?) are the potential and its normal derivative,

and r = \g‘l (x — )2 4+ (y — n)?. The factor ¢ is equal to unity within boundaries, but

will be 1/2 on smooth boundaries. As stated before, Eq. (7) can be expressed in a
~matrix form as the same as Eq. (5),

(¢} = {z®} ®

(3) Boundary Conditions of Current Potential

Necessary boundary conditions for the case under consideration are summarized
in the following:
1) Free water surface condition: It is assumed that the varmtmns of water level due
to the current can be neglected.

dp

5o =0 z=0 (9)
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2) Boundary condition on the impermeable cylinders: For an impermeable cvl:ndem
the flow is null in the normal direction.

a—y' = ﬂ on Fg {lﬂ:l
3) Boundary condition on the pseudo-boundary I';: Continuity of mass and energy
fluxes between region I and region II at the pseudo-boundary I'y h?a.cls to the expres-
sions.

pll)  §pl
o v (11)
‘P{l} - ‘P“} (12)

(4) A System of Equations

To facilitate the substitution of boundary conditions, Eq. (8) is first decomposed
into two sub-matrices containing contributions from the pseudo-boundary I';, and the
boundary of cylinders I'z, respectively. Dividing the boundaries into N,, N; constant
elements, with the total number of elements equal to N (= N; + N;), Eq. (8) can be

expressed as
()= @) 6=1 oo

Substituting Eq. (2) into Eqs. (11) and (12) together with Eq. (5), then a little algebra
leads to,

{#7} =tk -k} - K7} (14)

Substituting Egs. (14) and (10) into Eq. (13), the current potential r,pm and :pgz]' on
boundaries ['; and I's can be calculated.

(5) Current Velocities in Region II

As the current potential ©(? and its normal derivative ®) have been obtained,
the components of current velocity u and v in region II can be expressed in terms of
potential and its normal derivative on the boundaries of region 1I as,

‘Pj r{ Elﬂl

2 (%= m-‘) Lol [If_; _ 2=y —zi)l(zs — zi)ve + (y; - Fi}"y]]}i’
= .

{ @ (y; = m) o [% + 2 —wil(=; — ?:‘JF=I+ (v — vl }ds; (16)

where v, and v, are, respectively, the components of unit normal vector v on the
boundary in the z- and y-directions, the subseript { denotes the location within region
I



150

-
Le 'fl ;;;;...

."i.

2.2 . Wave Potential ;

A wave is assumed to incident from opan?}ea region far away from cylinders. It has
an angular frequency o,, an amplitude (,, and a wave number k,. The wave intersects
the z-axis with an angle w,. The following linear dispersion relation is assumed to
hold,

ih i .-
= k,h tanh k;h : (17)
where g is the gravitational acceleration. It is assumed that the current velocity and
the wave motion are small. The wave potential can be expressed as,

W Lo g gt (18)

s - Ta

where ¢ = /—1 is the imaginary constant, t is time, ¢ is the dimensionless potential
function satisfying the Laplace equation,

2
Bq{l g:f+aﬂ¢ 0 (19)

and o in Eq. (18) can be expressed as the relation of Doppler effect.
o= 0.+ kU (20)

The frequency & is the apparent wave frequency due to current. In Eq. (20), | k | =k,
is wave number, | 7 | = \/u? + v is current velocity in region II. When both | k | and
| 7 | have been known, applying the Doppler effect, the apparent wave frequency ¢ in

the wave-current field can be calculated and is then used to the boundary condition
of free water surface.

(1) Wave Potential in Region [
The wave potential in region I, ¢(*), is a combination of the potential of incident
wave, ¢°, and the diffracted wave potential due to the cylinders, ¢*,

¢,':U (z,y,2) = ¢°(z, 9, 2) + ¢*(z,9, 2) (21)

It is assumed that the pseudo-boundary I'; is sufficiently far away from the cylin-
ders, the wave scattering due to them can be neglected in region I. Due to the as-
sumption of constant water depth, h, in region I, potential ¢{!) in region I can be
expressed in the following way,

B(e1,2) = [°(2,9) + 1 (2] a1 @)

where f° is the incident wave potential function, and f* is the diffracted wave potential
function induced by the presence of cylinders. In the wave-current field, the incident
wave potential is written as

fo(z,y) - exp|—iot] = —i - exp {—i[ko(z cosw, + ysinw,) + ot]} (23)
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Substituting Eq. (22) into Eq. (19), one obtains the potential fum:-t.u:m .i'” which
satisfies the Helmholtz equation of the following form.

ﬂﬁf Ezf

t ot Kf*=0 (24)
On the fﬁ;ﬁeld boundary ', f must satlsfy the Sommerfeld radiation condition,
_— [“5;* el ] =0 (25)

where r is the radial ordinate. According to Green's second identity, the potential
function f* in region I can be obtained from the following integral equation,

e s =5 [ {TEna®En - renZmpenls o

where f*(£,7) is the p(ﬂ:&nti&l function specified by the geometric condition of the
boundaries in region I, f (§,7)(= 8f*(€,7)/8v) is its normal derivative with » local
normal coordinate to boundary taken outwards, and H; (!} is the zeroth order Hankel
function of the first kind. As stated before, the factor ¢ equals to unity within the

boundary but will have a value of 1/2 on smooth boundaries. For the case that
e = 1/2, Eq. (26) can be discretized in a matrix form as follows,

(F}= (&} {F} (27)
where
{F} = f;, i=L2-.N
F} =7

(K} = {576

{H*} = H:_-p y Li=12,--- N

S \ (28)
: H (i # 5)

i = { Hy+y (=)

- i 5
H; = gL_g;[H.E”{kafl]dﬂ

. 1 (1)
G;; ;- fr ,. H (kor)ds

4

in which {F*} and {F‘} are the potential function and its normal derivative on

pseudo-boundary I'y, respectively, and {K*} is the coefficient matrix related to the
geometric location of I';. The numerical scheme is discussed in detail by Chou (1983).



s Reg!on II is a closed threedifiansional dmm.m with constant water depth It

is bounded by the pseudo-boundary, S;, the free water surface, S,, the surfaces of

impermeable cylinders, S3, and an impermeable sea bed, S;. Expressing § = 5, +

3 8,+S; + Sy, and taking that the potential function for the waves in region II, P
" must satisfy the Laplace equation, then according to Green's second- identity law,
velocity potential ¢?)(z,y, z) for any point within region II can be determined by
the velocity potentml on the boundary, ¢? )(€,7,¢), together with its first normal

d!ﬂ'“hml ‘#' {f:ﬁ.f}. that is,

c6Mana) o [[FPen0g-00€n0g gl @

where R = /(z —£)? + (y — 1)? + (z — {)®. As stated before, ¢ is unity for points
inside the region and is equal to 1/2 on the boundaries.

To proceed with numerical calculation, the surfaces of boundaries S, through S,
are divided into N; to N discrete segments with constant plane element, respectively.
For the case that ¢ = 1/2, Eq. (29) is readily expressed as,

{¢2} = (5} {37} (30)
where
{q&ml} = {ﬁm}. =12, N1+ Nyg+ Nz + Ny ]
{3{2]} _ Eﬂ?
: - J
{K} = {H)}Y{G}
{H} - Hij,_f=1,2,"',N1+N2+N3+N.|
{G} = Gi.f \ {31]
ﬁij ﬁ # J]
H; = — 1 )
! { Hi+5 (=)
i 1 d1
T = g/ wr
1 1
Gij = — —dA
’ ar J4, R )

where {¢(?)} and {q_i{ﬂ}} are the potential fuction and its normal derivative on the
boundary S, and {K} is a coefficient matrix related to the geometry of the boundaries.
The numerical scheme is discussed in detail by Chou (1983).
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Neglecting the hydrostatic pressure and substituting Eqs. (1) and (18) mto Eq
(42), the total wave force on each cylinder can be calculated by the dynamic pressare
with integration over the surface of each cylinder.

o

F = P9 -iat f[—iuqb**} + Vi . VgD » dA (44)
From Eq. (18), the wave height ratio, :F(d (=( fﬁgj; is given by }

L
Ka=—liog - Vp® - Vg (45)
L]

III. NUMERICAL RESULTS AND DISCUSSION

On a uinform current field, waves are affected by the relative magnitude of the
current velocity. For example, the waves propagating against the current will be
forced to halt when the current has a velocity,

U, 2 - % tanh kh (46)

where C, is the wave velocity.

For the purpose to satisify above condition, F, = 0.1 is taken. The incident angle
of waves is w, = 0°, wave number k,h is varied from 0.1 to 1.6, and the angles
8 (= fo —w,) =0°, 45°, 90°, 135° and 180" are used. The radius of cylinder, a, is
0.25h, and the distance between cylinders, D,, is 0.25h.

3.1 Wave Force

Figure 2(a) presents the wave force of z-component on single cylinder. As shown
in Fig. 2(a), the wave force decreases with an increase in 8, for k,h less than 1.2, For
the cases of f, = 07 and 45°, the wave force is larger than those in absence of current,
but for the cases of A, = 135° and 180°, it becomes smaller. Figure 2(b) shows the
wave force on cylinder of y-component, which is very small and less than 0.015.

Figure 3 shows the z- and y-components of the wave force on each cylinder for
the case of double cylinders. The variation of z-component of wave force with wave
number is similar to the single cylinder. The y-component of wave force on cylinder
is shown in Fig. 3(c) and 3(d), it is larger due to the distribution of asymmetrical
pressure around cylinder for any angles 8, . For the cases of 8, = 0° and 45°, the
y-component is larger than those in absence of current, but for the cases of 8, = 135°
and 180°, the wave force on each cylinder is less than those in absence of current for
the wave number k,h larger than 0.7.

Figure 4 shows the z- and y-components of wave force on each cylinder for the
triple cylinders. The variation of wave force with wave number on each cylinder are
similar to the single or double cylinders. The z-component of wave force on the middle
cylinder (No. 1) is larger than the others (No. 2 and No. 3), but the y-component is
less than the others. : G e

Figure 5 compares the z- and y-components of wave force on cylinder for the triple
cylinders with 6, = 45°, 90° and 135°. It is demonstrated that the z-component of
wave force on cylinder of No. 2 and No. 3 is almost equal, excepting k,h > 1.0
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For the cases of #, = 45° and 90°, the cylinder of No. 3 has the largest force of
y-component and the smallest one is cylinder of No. 1, but for the case of 8, = 135°,
the y-component of No. 2 is the largest one.

3.2 Distribution of Wagve Height

Figures G-8 shﬂw tiiwwa.ve height distributions for kh =- 1 0 (o2h/g = 0.762) and
the angle of incident wave isw, =0°

Figure 6(a), shows the case of single cylinder in wavefield without current, the
distributions of wave height are symmetrical to the direction of incident wave. As
shown in Fig. 6(b), the wave heights are increased, because wave propagates in the
same direction as current. The distributions of wave height also symmetrize about
the r-axis. Figur®-6(c) shows the case of §, = 45°, the wave heights are unevenly
distributed and shifted toward the negative y-direction due to the Doppler effect.
Figure 6(d) shows the case of 8, = 90°, the distributions of wave height are similar to
those in absence of current, besides those have a Iitﬂi asymmetry about the direction

of incident wave. It is caused by the wave numbers | k | at any place on water surface
are variously due to the Doppler effect. For the cases of 8, = 135° and 180°, the
wave heights decrease as shown in Fig. 6(e) and 6(f) due to the current propagating
against the wave.

Figure T and 8 show the distributions of wave height for the cases of double and
triple cylinders in wave-current field. The variety of distributions of wave height is
similar to that of single eylinder.

IV. CONCLUSION

First of all in this paper, the two-dimensional boundary element method is applied
to obtain the distribution of current field. Secondly, the Doppler effect is used to
express the dispersion relation of wave which includes the effect of current. The
Doppler effect takes it into the boundary condition of free water surface. Finally,
the three-dimensional boundary element is applied to obtain the velocity potential in
wave-current field which is affected by the cylinders.

According to our method, the interaction among current, wave and cylinders can
be properly expressed, even for the case of the direction between wave and current
are perpendicular.
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