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ABSTRACT

Generation of two dimensional nonlinear waves is simulated numerically by bound-
ary element method. The present scheme is based on the Lagrangian description to-
gether with finite difference to the time step. An algorithm to generate waves with
any prescribed form is also implanted in the method. The numerical model is verified
by studying the case of periodical waves impinging against a vertical wall. Time his-
tories of the evelution of two dimensional periodical waves running up on a sloping
beach as well as the distribution of current velocity within the fluid region are then
presented.

Keywords: nonlinear waves, boundary element method, Lagrangian description,
wave-making

I. INTRODUCTION

Problems associated with wave generation, propagation and deformation have
been studied numerically by many researchers. Based on the linearized governing
equations, Madsen (1970) used a mathematical model for the particular problem
of the wave generated by a sinusoidally moving piston-type wavemaker. Faltinsen
(1978) presented a numerical method for studying the sloshing in a wave tank with
a two-dimensional flow. According to Green's formula, Nakayama {1933} applied a
new boundary element technique to the analysis of nonlinear water wave problems,
including two wave-making problems. Brorsen and Larsen (1987) repurtﬂd a new ap-
proach to the generation of waves in a boundary integral equation model for nonlinear
regular waves. With the well-known Green's theorem, a time-domain second-order
method for the simulation of transient, nonlinear wave propagation in a flume was
then developed by Isaacson ef al {1994]. -Besides, by the finite element method, a
two-dimensional nonlinear time domain free surface flow problem was analyzed by Wu
and Taylor (1995), and the numerical results were given for the vertical wave maker
problem and for a transient wave in a rectangular container. Chou et al {1396}
studied the deformation of nonlinear waves in coastal zones with submerged nhsta.cle
by using the boundary element method.

In this study, two-dimensional nonlinear wave-making pmblﬂm are considered
numerically by boundary element method. The algorithm is based on the Largrangian
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description and finite difference of the time domain. In the present numerical model,
a scheme to generate waves with any prescribed form is implanted. The stability of

the model will be cross-checked by the constancy of mass and energies.

II. THEORETICAL FORMULATION

As shown in Fig. 1, a Cartesian coordinate system is employed. The origin is
located on the still water level and the z-axis is positively upwards. The flow field is
bounded by the pseudo wave-generating boundary I'y, the free water surface I'; and
the impermeable sea bed I'3. Assuming that the pseudo wave-generating boundary
I'y is sufficiently far away from the coastal zone, wave scattering induced by undersea
topography or obstacles can be neglected: The fluid within the region is assumed to
be inviscid and incompressible, and the flow to be irrotational. Fluid motion then has
a velocity potential ®(z, z;t) satisfying the following Laplace equation:

Fe P
dzx? % 822 ) (1)
2.1 Boundary Conditions
(1) Boundary Condition on Pseudo Wave-Making Boundary
The boundary T'; is assumed to represent a wave-generating device. In this study,
a piston wave generator is assumed for simplicity, although it is clear that paddle of
any desired type can be simulated. Requiring that the horizontal velocities of the
pseudo wave-paddle U(f) and the adjacent fluid flow be continuous, we obtain the
following relationship: S
e #=5 =0 o
where v is the unit normal.
‘Wave with prescribed form can be simulated by selecting suitable input U(t). In
this study, periodical waves are simulated. U(f) can then be expressed as

U{t) = -—agosinot [3]

sinh kh cosh kh + kh

4
2sinh?® kh “)

a = {p
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Where o {=2n/T) is the angiilar frequency: {,;mthﬂ ﬁhve"mﬂpﬁtude,_-‘k%‘g_ the wave
number, h is the constant water depth, and T is the period of the wave to b generated.

(2) Boundary Condition on Free Water Surface - i : 5,
The atmospheric pressure is assumed to be constant. Boundary uundltmns on the
free water surface can thus be obtained from the lunematlc a.'m:l }}'H.H.IIIIC conditions

asfolluws D &@
. _Dz._ 8% o : s
= Dt 8z E [5}
D: &%
B g (6)
D& 1 [rae\? [oe\? .
E”‘C"E[(EE) +(a)]=“ @

where D) is the Lagrange differentiation, g is the gravitational acceleration, and ( is
the surface elevation.

(3) Boundary Condition on Sea Bed

The water particle velocity is null in the normal direction on the impermeable
seabed:

0% .

e 0 (B)

2.2 The Integral Equations
According to Green’s second identity, velocity potential ®(z,z;t) at any point

within the region can be expressed by the velocity potential and its normal derivative
on the boundary as

oz, zt) = [""a'q”['£ 2L (W v m t] ]ds (9)
where r = [(£ — z)* + (g - z]l“]i_

When the inner point (z,z) approaches the boundary point (£',7'), due to its
singularity, the velocity potential $(£,7;t) can be expressed as:

a®(€,m; t} 1
| = [ 2o ng -senogng|es 0
where R = [(€ - €')* + (n — )]},
In order to proceed with the numerical calculation, the boundaries I'y through I's

are divided into Nj to N3 discrete segments with linear elements, the above equation
can then be written in a discretized form as

v LS | o
®(E 0+~ ZL[%[EJ,!]M; + (6 n )Mol oI —ds
- (11)
_— _ ] |
o Z/r (@506 m )My + B4 (¢,m,t) M) In ~ds

=115 ; .
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where N -Nl + N2 -I-Na,, E = fal-f,, $j+'|_ +1;’8v and . Mh Mz are the
shape functaﬁs M, =1 —x]ﬁ Mg = (1+x)/2, ami xisa local dimensionless
coordinate. -
Equation (11) can be exprﬁsed in a matrix form as .

=[0] (3 (12)

where [#] and [®] are, respe-:twel;,;, formed by the nodal values of the potential func-
tion and its normal derivative dn the bouuﬂarm and [0] is a matrix related to the
geometrical shape of the boundary;

®] = ¥, (i=1~ N) 1
B = $=08/00 (i=1~ N)
0] = [H+17'[q]
[H = Hy, (=1~ N)
[G] = Gij- (!.,j=1 ~ N]
o {Eij o (i#7) ’ (13)
v Hiji+1  (i=))
[_.i'] = unit matrix
= 3+ hi (722)
o= (I 33
. i >2)
Gy ae 9ii + Gij—1 U_—
’ {giwm G=1)
P LA
By = o Tj}rfl&plflrﬂ‘ (14)
. gl
.ﬁ.*-j - A FJMZBPIHTJ (15)
ot = M muwlar (16)
N m Jry ' i)
A e ol M]nitﬂ" 17
9 = ¢ A (17)

m Ty

The numerical scheme has been discussed in detail by Chou (1983).
To facilitate the procedure of substituting the boundary conditions into each
boundary, we rewrite Eq. (12) as the assembling of the following relations:

[®:] = [0;] [®;], i,j=1~3 (18)
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2.3 A System of Equations .
(1) The initial conditions on each boundary are summarized. ﬂs'%D]}WS
1) The pseudo wave-generating boundary I'y
Requirement of continuity between horizontal velocity of the pseudo wave-paddle
U(t) and the Auid motion gives rise to

—o 087 }
=21 =-U0)
where superscript 0 denotes the beginning time of the simulation.
2) The free water surface I'y
Assuming that the water surface is initially at rest (t = 0), the velocity potential
is therefore null, i.e.,

(19)

#=0 (20)
3) The impermeable sea bed I'y
The flow is null in the direction normal to the impermeable seabed. Therefore,

Eﬁ:%zn (21)

(2) The finite difference of related terms

The tangential derivative on the free water surface, (8®2/8s):, can be approxi-
mated through

(%),

%

ﬁ..ﬂ'.‘_
(& ) Dy i41/8" + (Asiyr — Asy) - Bai/s”
Fit1

As; '
= (ﬁ) Py y /s . (22)

Ls; = V‘rﬁiﬂ — )% + (zig1 — z)?

g = ﬁ3g+1+ﬂ.,s,' : s‘"=.ﬂ3‘i~ﬁ$i+]

where s denotes the tangential direction of the free water surface. On the free surface,
we have

(23)

where 3 is the angle between the free water surface and the r-axis.

At the k-th time step, the profile of free water surface is expressed by (z*, z¥). From
Egs. (5) and (6) we can evaluate that at the (k+1)- th time step which is expreaﬁed
by (z*+1, zF+1) as follows:

=k 4 (a::) At (24)
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where At denotes the discreted time difference interval.
From Eqs. (7) and (23), the velocity potential of the free water surfaoe at the
(k41)-th time step, ®**!, can be appmx:mted through

EF — B% + [(?’;’) +(%)l At — gzFH1AL (26)

Substituting Egs. (2), (8) and (26) into Eq. (18), we can obtain the following

simultaneous equationg.
On 0 O |[& 1
Oz —I O i (27)

~y

E] 2iaa I =04 0
P, =|0 =03 0 ki
0 03 I Oz 0 Oag Dy

(3) The iterative scheme

1. By substituting Eqs. (19) ~ (21) into Eq. (18), initial values for the normal
derivative of the velocity potentials on the water surface, 8&% /v, the velocity
potentials on the pseudo wave-generator, ¥, as well as the velocity potentials
on sea bed, %, can be obtained.

2. Tangential derivative of velocity potentials on water surface, 8®% /s, is then
calculated using Eq. (22).

3. Surface elevations, (z**!, z*1), for the next time step can be obtained from

Eqgs. (24) and (25).

4. The velocity potentials on the free water surface for the next time step are given

by Eq. (26).

5. At the next time step, t=(k+1)At, the coefficients of the matrix [O] in Eq. (18)
is recaculated, using profiles of the water surface obtained in procedure 3 and
the new position of the psendo wave-paddle.

6. Substituting the velocity potentials on water surface obtained by procedure 4,
the horizontal velocity U[t) of the pseudo wave paddle given by Eq. (2), and the
boundary condition on the sea bed g:iven by Eq. (8) into Eq. (27), the normal
derivative of velocity potentials @, e on water surface, the velocity potentials
®5*! on the pseudo wave paddle, a.mi the velocity potentials @""'1 on the sea
'b-ed at the k+1 time step can be obtained.

7. Repeating the above procedures 2 through 6, the time history for the generation,
propagation and deformation of waves can be simulated.
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III. NUMERICAL RESULTS ANQ DISCUSSIONS

3.1 Time Histories of Wave Profiles

To verify the present numerical scheme, the case of periodical waves running
against a vertical wall is first considered. All incident waves are assumed to have
an unique amplitude {y = 0.05k, where h is the constant water depth, but with var-
ious dimensionless angular frequencies a®h/g=0.125~1.00. The pdeudo wave-paddle
is placed at a distance of 5 times the wave length away from the origin of the coordi-
nates. For the cases of vertical wall, At = T/160; at the initial time, As = L/32 on
the free water surface, but when the waves began to propagate, As changes along with
the different time step, and is defined as a distance between two close nodes. For the
cases of the inclined slope which varied from 1:0 to 1:1, As = L/40 and At = T/400.

Figure 2 shows the calculated time histories of the generation of periodical wave,
propagating and running up against a vertical wall. Figure 3 shows the cases of
a sloping beach with the slope varied from 1:0 to 1:1. Figure 4 is a comparison
of standing waves with various frequencies o2h/g=0.125~1.00 impinging against a
vertical wall.

Figure 5 shows the profiles of a progressive wave without reflection from the ver-
tical wall. Compared to the 3rd order Stokes wave derived by Skjelbreia (1959), good
agreement is achieved.

Figure 6 shows the time histories of the wave profile at the time when the incident
wave is reflected by the wall, and a clapotis is formed. The results are also consistent
with the theoretical results given by Tadjbaksh (1960). From Fig. 4 we find that the
characteristics of the finite amplitude wave are also strong toward various steepness
of incident wave,

3.2 Stability of the Numerical Model
The conservative property of the present numerical scheme is cross-checked by the
continuum equations for mass and energy through the following formula:

*

M = (dx
Tz
E = T.+V
1 F ’ (28)
T w= —fﬁ-@ds
2Jr : : :
. 1 2
V = —g| (%=x
27 Jr, J

where M denotes the mass of fluid, E is the total energy, T'; is the boundary of the
free water surface, T, and V are, respectively, the kinetic and potential energies.
Figure 7(a) shows the results for the case of a periodical wave. The mass increases
after generation of a wave crest and decreases at the trough, thus total mass should
be approximately null after each period of wave, However, for the cases of period-
ical waves in this study, the averaged water level will accumulate when the waves
are generated. Besides, since the pseudo paddle moves back and forth continuously,
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Fig. 2 Time histories of wave propagation and run-up against a vertical wall.
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according to the conservation of energy, the total energy is equal to the kinetic and
potential energy that the pseudo paddle transmits, with a gradual increase of the
total energy as a result. Due to the resonance of the clapotis, the oscillation of total
energy becomes larger when the standing wave began to form gradually, the vertical
dashed line in the figure shows the time when the wave reaches the wall. Also, the
relation between kinetic and potential energy is shown in Fig. 7(b).

IV. DISTRIBUTIONS OF CURRENT VELOCITY

The current velocity at any inner point within the region can be derived from the
velocity potential ¢ and its normal derivative as 8% /3 on the boundary. By Eq. (9],
we obtain

8%(z, z;t)
8

_ %i[ﬁ{(M@j(g_q-,:}+M23j+1[£1fr;fl) (I,._:t:) (29)
i=1 M)

rd

j(Ml‘f‘j{E,mtl + Ma®;41(€,m3t)) {p,, (,le =

- m[ﬂ:—ﬁiiz—n}]}d&

P (z, z; 1)
Oz

R El;gfr, {{M]Ej{“flﬂi t) + Ma®;44 (€, m;1)) (zrzﬂ) (30)

i
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Fig. 7 Variation of mass and energy.

where v, and v, are the components of normal vector v in the directions of z and z
on the boundary.

Figures 8(a)~(h) show the distribution of current velocity for a progressive peri-
odical wave with a time increment of 1/8 period of the wave. For progressive waves,
the water surface displacement shows that each wave profile shifts without changing
its shape. Since the wave profiles travel from the pseudo paddle to the wall, the dis-
tribution of the current velocity for each period of wave shifts from the right to the
left gradually. Besides, from the enlarged figure shown in Figs. 9(a)~(h), it is found
that each fixed point within the region has a velocity with the angle varying from 0
to 360 degree. This indicates that the movement of the fluid particles is circular as
shown in Fig. 12(a). However, for finite waves, the path of each moving particle does
not form as a closed circle. The wave profile is included at the top of the figure.

Furthermore, when clapotis is formed, the particle on each node shuttles only left
and right, while the ones on the crest or trough move only up and down. The time
histories for the distribution of current velocity are also shown in Figs. 10{a)~(h), as
well as the enlarged figures in Figs. 11(a)~(h). Fig. 12(b) shows the movement of the
fluid particles.
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Fig. 12 The paths of the fluid particles.

V. CONCLUSIONS

In this article, an algorithm is derived to analyze the generation and propagation of
two dimensional nonlinear periodic waves. It was found that the numerical instability
of the present scheme appears for slopes greater than 1:1. In other cases, reasonable
results for the generated waves as well as the current velocity were obtained.
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