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Effects of submerged structure on a wave—current field are swdied numerically by
means of BEM. The potential flow field is assumed to be composed of a steady current
potential and an unsteady wave potential, where the Doppler effect is taken inte
consideration. The current velocities affected by the submerged structures were
determined by using the three-dimensional boundary element method. Dispersion
relations affected by the presence of current are used to caleulate the apparent wave
frequencies. Wave height distributions in the wave—current field were estimated.
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1 INTRODUCTION

Intensive studies on wave—current interactions have been
carried out by many researchers theoretically or numeri-
cally, The concept of radiation stress was first introduced
by Longuet-Higgins and Stewart'. Ship motions in wave—
current field were studied by Newman®, Wave diffraction
and deflections by submerged structures in a uniform cur-
rent field were discussed by Grue and Palm®. Matsui et al.*
analyzed forces on a vertical cylinder in a wave—current
field through perturbation analysis by using potential flow
theory.

Studies on wave—current interactions have usnally been
hased upon the assumption that wavelengths will be affected
while their frequencies remain unchanged (see, e.g.
Longuet-Higgins and Stewart'). The assumption can be
questioned, since the Doppler effect states that the angular
frequency will be affected by current velocity, In this paper,
both current and wave are assumed to be small, therefore the
velocity potential in the wave—current field can be treated as
a composition of a steady current velocity potential and an
unsteady wave potential. The same assumption was also
used by Newman®.

First, in this paper, the velocity field around the sub-
merged structure due to the current is calculated by means
of the three-dimensional boundary element method. The
apparent wave frequency affected by the current can be
calculated, which means the Doppler effect is taken into
consideration. Second, the three-dimensional boundary ele-
ment method is used again to calculate the velocity potential
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arcund the submerged structure that is induced by wave,
while the apparent wave frequency should be used for the
boundary condition on the water surface. Finally, the total
velocity potential in the wave—current field can be obtained
by the superposition of the velocity potential induced by
current and wave. The distributions of wave height around
the submerged structure are shown.

2 THEORETICAL ANALYSIS AND NUMERICAL
SCHEME

Figs 1 and 2 show the definition sketches for the cases to be
studied, where the submerged structures are tocated on the
sea floor. The Cartesian coordinate system {x.y,z) is adopted
and the x—y plane is located on the water surface with the z-
axis positively upwards. A pseudo-boundary is located far
away from the submerged structure; previous works done by
Chou and Han’ have shown that approximately half of an
incident wave length will be enough. The fluid field is
divided into two parts by the pseudo-boundary, where
region 1 is an open sea region with constant depth 4 and
region Il is a closed domain with uneven sea floor. The fluid
is assumed to be invicid, incompressible and the flow is
irrotational, the flow in both regions will have velocity
potential $ that satisfies the following Laplace equation.
’e e e
o + E}T 7T 6_752 = 1)

As shown in Figs 1 and 2, current with velocity {7y comes
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Fig. 1. Definition sketch of a submerged structure with semi-
spherical shape,

from infinity intersects the x-axis with an angle 8, together
with a small amplitude wave with angular frequency oy ( =
2x/T, where T is the wave period), amplitude {; incidence
from infinity intersects the x-axis with an angle wg. The
velocity potential ¢ is composed of two parts: the velocity
potential $° induced by the steady current, and the velocity
potential " induced by the unsteady wave under con-
sideration of the Doppler effect as follows:

=9+ " @

where both ¢ and ¢ satisfy the Laplace equation,
2.1 Velocity potential of steady current

The potential function of the uniform current region I is a
result of undisturbed potential ¢° of the current velocity
with velocity U, incident from the open sea, and the dis-
turbed potential " that is induced by the presence of the
submerged structure;

eV=¢"+¢" (3)

where ¢ = — Up(x cos B + y sin Bg). It is noted that away
from the submerged structure, the disturbed potential of
current, ¢, can be neglected.

Region IT is a closed three-dimensional domain which is
bounded by the pseudo-boundary §, the water surface S,,
the submerged structure fixed on sea floor S; and the
impermeable uneven sea bed Sy. According to Green’s sec-
ond identity, the potential ¢?in region II can be determined
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Fig. 2. Definition sketch of a submerged structure with rectangular
CrOAS-8€CHON,

by the following integral equation,

i 1 a1
CCP(Z)(xs :Z)= a [5 [QZ(E’ H. ;)E_;p(zl(gxn! f)aﬁ ds

(4)

where gom(E, 7, ) and (am Eno = &cp{z)far) are the
potential and its normal derivative with v local normal
vector to boundary taken outwards, S = S; + 5, + §; +
Spand R=[x— £ + (0 — 9" + (z — AP is the dis-
tance between an inner point (z,y,2) and the point (£,7,{) on
boundary §. The factor ¢ is equal to unity within boundary,
but will be 1/2 on a smooth boundaries.

In the numerical analysis, the boundary §, where ¢ = 1/2
is discretized into N constant plane elements, egn {5) can be
written in a matrix form as,

1e®) = (e} {a®) (5)

where {¢'”} and {$™) are the potential function and its
normal derivative on the boundary S, respectively. {k} is a
coefficient matrix related to the geometric shape of the
boundary. The numerical scheme is discussed in detail by
Chou and Han °.

The boundary conditions for the cases under considera-
tion are summarized as follow:

1. Free surface condition: assuming that the variations of
the water level due to the current can be neglected.

9 =0, z=0 (6)

2. Boundary condition on the impermeable sea bed and
the submerged structure. The flow is nil in the normal
direction on an impermeable surface.

=0 (N

3. Boundary condition on the pseudo-boundary S;:
according to the continuity of mass and energy
fluxes between region I and region II on the pseudo-
boundary §;, we have the following relationship.

7% =gV (8)

o =t (%)

To facilitate substitution of the boundary conditions, eqn
(3) is first decomposed into four sub-matrices containing
contributions from the pseudo-boundary S, the free surface
§,, the boundary of the submerged structure Si, and the
boundary at the sea floor S, respectively, These boundaries
are divided into N\, N;, N5 and N, constant plane elements,
with the total number of elements equal o ¥ (=N, + N2 +
N3 4+ Ny, eqn (5) can be expressed as

(e} = {k; 1) (j=1-4) (10)

Together with eqn {2) and the boundary conditions from
eqns (6)}—(9), potential functions on the boundaries can be
calculated.
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2.2 Unsteady wave velocity potential

The wave is assumed to incidence from the open sea region
far away from the boundary, with an angular frequency oy,
an amplitude {4, and a wave number k,. The wave intersects
the positive x-axis with an angle wg. Assuming the Froude
number based upen the current velocity as well as the wave
amplitude are small, the potential function for waves can be
expressed as,

&Y,y 0= iﬁqﬁ{x,y,z)e e (11)
L]

where { = +/ — 1 is the imaginary constant, ¢ is the time, ¢
is the dimensionless potential function satisfying the Laplace
equation, and « is the apparent frequency due to current.

o=gy+kU (12)

with 1kl = kg, |71 is the current velocity for any point
within the region.

The wave potential function in region I, ¢, is a combi-
nation of the potential function of the incident wave, qb”, and
the diffr“acted wave potential due to the structure on the sea
floor, ¢ .

6Py, 0 =0, 3, + 6" (x,,2) (13)

Since it i3 assumed that the pseudo-boundary with constant
depth, by separating the variables, potential function ¢'" in
region I can be expressed as,

(1}

cosh[ky(z + #)]
coshikyh)
By substituting eqn (14) into the Laplace equation, we

obtained the potential function f* which satisfies the follow-
ing Helmholtz equation,

azf* aZf*
ax2 +k@f (15)

6N,y 2= [0 )+ (x, )] (14)

At the far field S., f* must satisfy the Sommerfeld radiation
condition. According to Green’s second identity, the velo-
city potential in region I can be obtained from the following
integral equation on the boundary,

Fen=1], {f*fs, WHS kar) =6, m)+

X [H}}”(kor)} }ds (16)

where f (&,) is the potential function on the boundary,
FUED(=3a/ov) is its normal derivative with v local
normal coordinate to the boundary taken outwards, I'y, is
the pseudo-boundary, and H}” is the zeroth-order Hankel
function of the first kind, As stated before, the coefficient ¢
equals 1 within the boundaries, but will have a value of [/2
on a smooth boundary. In this case, the boundary S, was
divided into M constant line elements, therefore eqn (16) is
discretized and written in a matrix form as

{F'}={K"H{F"} (n

where {F'} and {F'} are the potential function and its
normal derivative on the pseudo-boundary I'|, respectively,
{K"} is a coefficient matrix, and is determined by the
geometric shape of the boundary.

The wave potential function in region I, ¢, as stated in
Section 2,1, can then be expressed as

(¢} = (K, 1Y (i.j=1-) (18)
The boundary conditions of which are summarized as follow:

1. The water surface boundary condition: assuming both
current speed and wave motion are small, the free
water surface boundary condition for waves subjected
to the Doppler effect is expressed as’,

(2 2
=Ty, gm0 (19)
az g

where o can be calculated from eqn (12).

2. Boundary condition on the impermeable sea bed
and submerged structure: since the surfaces are
impermeable, the flow is nil in the normal direction,
ie.

¥ =0 (20

3. Boundary condition on the pseudo-boundary §:
requirement of continvity for mass and energy
fluxes between region 1 and region II at the pseudo-
boundary §, leads to the following expressions.

¢ =g n
t}'){z) =¢|(1) . (22

The pseudo-boundary S is divided into ¥ ¢lements in the
2-direction, and M elements in the horizontal direction, with
the boundary conditions shown in eqgns (14), {21) and (22),
the potential function, ¢>'iz), and its normal derivative, q?:{f’.
on the pseudo-boundary are related as '

{67} = {RHF* —K*F"} + C{RUK QNS (23)

where C=ky/Nysinhikph), with Ny = 112 + Fkohf
sinh(2koh). The coefficient matrices {R} and {Q} have
been discussed in detail by Chou and Han’. By substituting
eqns {19), (20) and (23) into eqn (18), we obtained

¢ 2 3
" ¢
[K), —~ CRK Q] —K3 0
4 &(2)
1
o .
$ 5 —Kp-1 0 4 @%
3 39
K3 —Ky; =
. g A
RIF° = K*F")
= 0 {24)
0
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The pressure at any point within the wave—current tield can
be calculated by using the Bernoulli equation; moreover,
the air pressure on the free surface is assumed to be con-
stant and thus can be neglected, therefore, the surface ele-
vations in region II can be expressed by:
"
(= - 1{£+v@f‘v¢=“’] (25)
gl at

Applying egn (11), the ration between the surface eleva-
tion, {, and the amplitude of the incident wave, &g, can be
expressed as K { = {/¢y) through:

K= Oilfw‘z* B PEA I (26)
{4

3 RESULTS AND DISCUSSIONS

Two examples are presented and discussed in this paper,
including a submerged structure having a semi-spherical

shape with a diameter /; and a rectangle section with dimen-
sion / X & X ¢ (length x width X height).

As stated above, the Froude number F, can be expressed
by the current velocity Uy and the water depth 4. Through-
out the calculation, the Froude number is taken as F, = 0.1,
the incident angle of the waves is set to be wy = 07, and
the wave number, koh = 1.0 (ogh/g = 0.762) is used.
During the calculation, angles between waves and
current, 8{ = F, — wy), were varied. Five different values
for the intersection angle 8, = 0°, 45°, 90°, and 180" were
used to demonstrate the effects of the wave-current
interactions,

3.1 A semi-spherical structure

As shown in Fig. 3, the wave height distributions are for the
cases with the reservation that the dimensionless wave
numbers kgh = 1.0. Fig, 3a is a case without current, it
shows that waves behind the submerged structure are
larger than those in the front, the reason may be the diffrac-
tion due to the structure. Fig. 3b shows that when waves
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Fig. 3. Wave heighl distnbutions in region II for a spherical

shaped structure. kgh = 1.0, wp = 0°, F, = (L1,
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Fig. 4. Wave height distributions in region I for a rectangular
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travel on the same direction 4s the current, i.e. 6, = 0°, wave
heights increase because the diffraction behind the structure
is exaggerated due to the Doppler effect; therefore the dis-
tribution of wave height is symmetrical along the direction
of incidence wave, L.e. the x-axis. With an intersection angle
#, = 45° shown in Fig. 3¢, wave heights are larger than those
of cases without current; however, since the flow velocities
are not symmetrical about the direction of incident wave,
wave heights are unevenly distributed and are shifted
toward the negative y-direction, With 8, = 90° shown in
Fig. 3d, the wave heights distribution seems to be similar to
the case without current, but with some residual component
current velocities aroused by the submerged structure.
These marginal effects on wave height distributions are dis-
cernible by the asymmetrical wave height distributions
about the direction of incident wave. Finally, for the cases
with #, = 135° and 180° as shown in Fig. 3e and Fig. 3f,
respectively, with the result that the wave interacted with
adverse current in the x-direction, the wave heights
decreased due 1o the reduction of apparent angular
frequencies.

3.2 A rectangular cylindrical structure

The boundaries are divided into a total number of 2024
constant plane elements, where the respective element num-
bers for each boundary are; N, =512, N, = 1024, N; =272,

Fig. 4 shows cases with a dimensionless wave number
kgh =1.0. Fig. 4a shows a case without current, the wave
height distribution seems to be similar as the previous case
shown in Fig. 3a. Furthermore, from the cases shown in
Fig. 4b—f, the angle between waves and current increases
from 6, = 0° to 180°, and the wave height distribution also

appears similar to results shown in the previous case,
i.e. Fig. 3b-—f, under similar conditions.

4 CONCLUSION

First of all in this paper the three-dimensional boundary
element method is applied to obtain the distribution of cur-
rent field. Second, the Doppler effect is used to express the
dispersion relation of the wave which includes the effect of
current. The Doppler effect takes it to the boundary con-
dition of the free water surface. Finally, the three-
dimensional boundary element is applied to obtain the
velocity potential in a wave—current field which is affected
by the structures.

According to our method, the interactions among cur-
rents, waves and structures can be properly expressed
even for the case where the direction between the wave
and the current is perpendicular.
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