China Ocean Engineering, Vol. 13, No. 4, pp.429 - 442.
China Ocean Press, 1999, Printed in P. R. China.

Breaking of Solitary Waves on Uniform Slopes

CHOU Chung-Ren{ B 5{=) " and OUYANG Kwan( 8k %)™

Abstract — The propagation, shoaling and breaking of solitary waves on mild slopes are simulated by
boundary element method. In this paper, the criterion of breaking solitary waves on mild slopes is discussed .
The criterion is that the ratio of horizontal velocity of water particles on the wave crest to wave celerity equals
one. However, the case that the ratic of horizontal velocity of water particies on the wave crest 10 wave ce-
lerity is below one but the front face of wave profile becomes vertical is also considered as a breaking criteri-
on. According to the above criteria, the breaking index for slopes 1:10 10 1:25 is studied. The result is com-
pared to other researchers’ . The deformation of solitary waves on slopes is discussed and the distribution of
fluid velocities at breaking is shown, '
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1. Introduction

Usually large amounts of energy released by wave breaking will cause serious damage to coastal
structures, thus, it is important to realize the characieristics of shoaling and breaking, including the
deformation of wave profile, the location and height of wave breaking . Earlier researchers { Ippen,
1966) obtained experimental results for shoaling and breaking of solitaty waves. Based on laboratory
experiments, the types of breaker are classified (Street and Camfield, 1966). For a solitary wave
passing through a channel of a constant width, or of a linearly decreasing width, Seaki et al.
(1971) discussed the changes in wave height, breaking point, and the height of run-up. Using an
approximate theory, Synolakis (1987} derived the maximum run-up for solitary waves. By use of
numerical simulation, Madsen and Mei (1969) simulated the deformation of solitary waves passing
through a mild slope onto a shelf. Nakayama (1983) analyzed the propagation of tsunami and run-
up of a solitary wave against a vertical wall. Based on the mixed Eulerian-Lagrangian technique,
Kioka (1983) presented the deformation and velocity field for plunging and spilling breakers. Using
the boundary integral equation solution, Kim et al. (1983) discussed the generation, propagation
and mn-up of both a solitary wave and two successive solitary waves. Based on the long-wave
equation with curvature effects, Seabra-Santos et ol . (1987) studied the evolution of a solitary wave
near an obstacle or over an uneven bottom. Grilli e ol . investigated the breaking of solitary waves
on slopes (1994a; 1997) and on a submerged breakwater {1994b) . Using boundary element, Chou
and Shih(1996) simulated the generation and deformation of solitary waves propagating on slopes.

To determine whether waves break or not, many researchers are interested in breaking criteria.
Stokes {1883} proposed a limiting wave profile and revealed that its critical angle is 120° in constant
water depth. Longuet-Higgins (1982) used the elementary function to describe breaking waves and
proved again the limiting wave profile proposed by Stokes. Another type of breaking criterion is the
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related breaking wave height H, = H,/h, , where H, is the breaking wave height and h, is the local
water depth at breaking. Different researchers have given different values of H, , for example, H,
= (.73 (Boussinesq, 1891), H, = 0.78 (McCown, 1894), H, = 0.83 ( Yamada, 1968} and H,
= 0.75 (Kishi, 1964).

The breaking criterion mentioned above is valid only for constant water depth. For waves prop-
agating on slopes, Camfield and Street (1969) proposed an empirical breaking criterion of related
breaking height as a function of slope. Based on shallow water equation, Dean and Dalrymple
{1984) derived the location of breaking . Using the fully nonlinear potential flow wave model, Grilli
et al . (1997) presented the criterion of breaking type and breaking index ..

To realize the characteristics of breaking waves, solitary waves with various incident wave
heights on different slopes are simulated. In this numerical model, the fully nonlinear free water sur-
face boundary condition is used. Linear elements are adopted and the double-node technique is used
to solve the corner problem. The deformation of waves on slopes is presented and the distribution of
fluid velocities at breaking is shown. Breaking indices for slopes 1:10 to 1:25 are summarized.

2. Theoretical Analysis
2.1 Governing Equation

The two-dimensional bounﬁanr element method with fully nonlinear boundary condition on free
water surface is used to simulate solitary waves propagating on mild slopes. The fluid is assumed to
be inviscid and incompressible, and the flow is irrotational. The governing equation can be ex-
pressed in terms of velocity potential ${x,z;¢) as
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where x and z are spatial coondinates in horizontal and vertical directions as shown in Fig. 1. The
symbols of I',, I',, I'; and I', in Fig.1 denote the boundaries of pseudo moving wave generator,
free water surface, impermeable slope and seabed, respectively, and k, is the constant depth of wa-
ter.
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Fig. 1. Definition of numerical wave tank.
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2.2 Integral Equation

According to Green’s Second Identity, if the velocity potential satisfies the Laplace equation
and its second derivative exists, the velocity potential can be obtained by the velocity potential on the
boundary, ®(&, »; ¢) , and its normal derivative, 3@ (£, 9:¢)/3n , i.e.

@(x, z3 ¢) = J- [347(5, : t) - ®(&, 9 ) d ln--] ds
1 inside ﬂuid domain
¢ = {1/2 on smooth bounﬂary (2)
0 outside fluid domain

where r = [(& - %)% + (g -2)]".
2.3 Boundary Conditions

For a piston-type wave generator, the fluid velocity normal to the paddle shonld be the same as
the horizontal moving velocity of wave generator U{:) :

W
L+

= - U(1), on I, (3)

Qs
a8

where n denotes the unit outward normal vector . For generation of a solitary wave , U/ { ¢ ) in
Eq. {4) can be expressed as

Uit} = .Hﬂ\/%sechzlm/ﬁ CAlyn ;t}] (4)

where H, , g and % are incident wave height, gravitational acceleration and water depth, respective-

ly, C denotes the wave celerity of solitary wave and is obtained by ¢ = v g(H + k) , and ¢, repr-
esents the characteristic time, which is half time of the movement of paddle. For the boundary con-
dition on free water surface, fully nonlincar boundary condition is applied, with the assumption that
the atmospheric pressure is constant and equal to zero:

a3

2o 1R (2] - o ©

where D) denotes the Lagrangian differentiation and 5 is the elevation of free water surface, On an
impermeable slope and seabed, the velocities normal to boundaries are equal to zero.

2.4 Numerical Method

To solve Eq. (2) numerically, linear elements are adopted for all boundaries, say, I, to I", .
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The double-node technique (Chou, 1988) is applied to the corners which have two different bound-
ary conditions. Based on the Lagrangian description, the following relation is obtained :

Dx 2P

W= p- o= g3 (6)
Dz a@
w o= ﬁ_t- = "3—; (7)

The forward-difference in time is used to obtain the position of free water surface at the next time.
This difference technique is also adopted in Eq. (5) to obtain updated velocity potential. The hori-
zontal and vertical components of fluid velocity in fluid field are

3P(x, 25 ¢) 1 {345(5.:33)(5— x)

dx T 2mlp an a
_q:.(g,,?;t)-l.r g_i(%'&”;:i)i)-g—:(zw_x}{?d2))]}::11"; (2)
_9B(x, z38) 11 [3D(&,n3e){n -2
w o= Bz T 2r p{ n oyt )
- oGepof [22(L - ag ) 2= nGoD)ly g

About the details can be referred to Chou ot ai .
3. Numerical! Results and Discussion
3.1 Breaking Criteria for Solitary Waves on Slopes

Many breaking criteria have been studied. For ¢onstant water depth, Stokes (1883), proved
that when the ratio of horizontal velocity of water particle on wave crest u to wave celerity C equals
one, the limiting angle of wave profile on crest equals 120 °, The related breaking wave height
H,/h, is usually adopted, in this paper H,/h, = 0.78 derived by McCown (1894) is used. Grilli e
al. (1997) defined the breaking criterion of solitary waves on slopes when the front face of wave
profile has a vertical tangent,

For the understanding of the characteristics of waves which reach the above criteria and determi-
nation of a suitable criterion for wave breaking on slopes, waves with height H,/h, = 0.1t0 0.4
propagating on slopes s = 1:10 to 1:25 are studied, The wave characteristics for each criterion are
summarized in Tables 1 to 4. The herizontal fluid velocity » on wave crest is calculated by averaging
three nodes near wave crest. From the results of simulation, it is found that these criteria of H/h =
0.78 occur first, then the angle of wave crest § = 120°, u/C = 1 occur, finally the front face of
wave becomes vertical. First of all, Hy/k, = 0.3 and s = 1:15 are analyzed to determine which
criterion is suitable for breaking criteria. _

In Table 1, the characteristics of waves which reach the criterion H/h = 0.78 are listed. It in-
dicates that the angle of crest is 165 ° and u/C is 0.53. Fig. 2 shows the time histories of fluid
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mass, total energy, the horizontal velocity of water particle on wave crest z and wave celerity C .
The criterion H/h = 0.78 occurs at £ = 5.5¢, , and the conservation of mass and energy is kept.

For this moment, the wave profile is shown in Fig. 3 (curve a), and slight asymmetry appears.
Fig. 4(a) shows the uniform distribution of fluid velocity. There is no scene that wave will break.

The criterion 8 = 120° is reached at ¢t = 5.7¢t, . From Table 2, u/C = 0.93and H/h = 1.
74 . The fluid mass and energy keep conservative, the wave profile (curve b in Fig.3) becomes
asymmetric and the wave height increases. The fluid velocities on the front face of wave profile in-
crease but the wave does not break.

Table 1 The location of wave crest, water depth, wave height,
angle of wave profile and w/C at Hfh = 0.78 .
Slope 1:10 1:15
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
xd hy 2.97 4.08 5.58 2.44 4.76 6.69 8.61
hikg 0.29 0.41 0.56 0.16 0.32 0.45 0.57
Hihg 0.20 0.34 0.45 0.13 0.25 0.35 0.46
¢ 1P 160° 156° 167° 163° 165° 155°
ufC 0.53 0.52 (.52 0.47 0.51 0.53 0.53
Slope 1:10 1:15 .
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
xfhg 6.59 o.42 11.97 4.60 8.82 12.29 15.1¢
Riky 0.33 0.47 .60 0.18 0.35 0.49 0.61
Hihg, 0.26 0.37 0.47 0.15 0.28 0.38 D.48
7} 159° 151° 151° 162° 156° 152° 148°
u/C 0.53 0.54 .53 0.51 0.54 0.51 0.53
Table 2 The location of wave crest, related wave height and u/C at 8 = 120°
Slope 1:10 1:15
Holhy 0.1 0.2 0.3. 0.4 0.1 0.2 0.3 0.4
xfhy 1.54 2.19 2.65 3752 3.81
Hik 2.36 1.42 1.57 1.74 1.58
ul/C 0.86 0.74 0.79 0.9 0.93
Slope 1:20 £:25
Hol by G.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
xfhy 3.86 4.46 6.16 .20 6.40 9.00 13.12
Hih 0.75 1.24 1.40 1.26 1.32 1.26 0.91
ul 0.55 0.80 0.87 0.83 0.83 0.84 0.70

The criterion u/C = 1 1is reached at ¢t = 5.745¢,. From Table 3, 8§ = 113 ° and H/h =
1.75. At this moment, the front face of wave profile (curve ¢ in Fig.3) becomes evidently steep
and the fluid velocities on crest become nonuniform. Because of u/C = 1 the water particles will
deviate from the wave profile, thus a breaking criterion is considered. For the criterion that the front
face of wave profile has a vertical tangent, the wave characteristics are summarized in Table 4. For
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some cases, €.g., for waves with incident height H,/h, = 0.2 propagating on slope s = 1:15,
when the front face of waves becomes vertical, the instability of wave profile is considered as a
breaking criterion even if 1/ is smaller than one.

Table 3 The location of wave crest, angle of wave profile and related wave height at ¢/C = 1.

Slope 1;10 1:15
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
ul € 0.25* 0.67" 1.00 0.76" 0.51° 0.92° 1.00 1.00
x/hy 3.96 1.57 1.54 3.02 2.08 2.45 3.31 4.43
g 174° 144° 116° 83 110° 97 113 108°
Hih, 0.29 1.56 2.36 1.42 0.87 1.37 1.75 1.76
Slope 1:20 1:25
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
ufC 0.55" 1.00 1.00 0.90" 1.00 1.00 1.00 1.00
xlhy 3.77 4.48 5.86 7.59 2.67 6.08 8.45 12.65
] 102° 132¢ 122° 80° 147° 103° 106° 106°
Hih 0.65 1.22 1.42 1.29 1.68 1.58 1.44 0.90
Table 4 The location of wave crest, related wave height, angle of wave profile and
u/ € when the front face of wave profile has a vertical tangent.
Siope 1:10 1:15
Hol kg 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
%l By 1.48 3.02 2.45 3.28 4.27
Hik, 0.375 0.428 2 0.258 0.391 0.517
Hik 2.54 1.42 1.57 1.79 1.81
4 84° 83° ar 86" 81°¢
uw/C 6.99 0.76 0.92 1.07 1.06
Slope 1:20 1:25
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
x/hy 3N 4.32 6.16 T 2.73 5.9 B8.26 12.64
Hihy 0.123 0.278 0.44 0.511 0.166 0.352 0.458 0.467
Hik 0.65 1.29 1.56 1.29 1.53 1.48 1.39 0.92
8 102° 88 86° BO® 83® 85° 82° 81°
u/C 0.55 1.711 1.78 0.90 1.62 2.68 1.12 1.76

3.2 Breaking Index

The breaking criterion is defined as when the ratio of horizontal velocity of water particle on
wave crest to wave celerity equals one. However, the case that the matio of the horizontal velocity of
water particle on wave crest to the wave celerity is below one but the front face of wave profile has
a vertical tangent is also considered as a breaking criterion. According to the above criteria, breaking
indices for slopes s = 1:10to 1:25 are summarized in Table 5. Breaking indices derived by Grilli
et al . {1997) are also listed. For slope s = 1:10 , the related breaking heights obtained by Grilli et
al. seem to be on the large side. For waves with H,/h, larger than 0.3 propagating on slopes milder
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Fig. 2. Time histories of mass, tolal energy, velocity of particle and celerity for Ho/hy = 0.3 on slope 1:15.
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Fig. 3. Deformation for Hy/hy = 0.3 on slope 1:15 (curve a: H/h = 0.78, curve b:
8 = 120°, cuve ¢: /€ = 1, curve d: a vertical tangent occurs on the front face of wave profile) .

than s = 1:20 , good agreements are obtained for breaking height H,/h, , but Grilli et al . s related
breaking heights H,/h, are larger than the present results. Grilli et af. " s locations of breaking point
are nearer to the shoreline than the present results. For other cases, the breaking heights H,/h, de-
rived by Grilli et al . are larger than the authors’ . This is because in the authors’ numerical scheme,
linear elements are used, and the five-point smoothing technique is adopted after the breaking criteri-
on is reached, therefore only the iitial shape of breaker jet can be formed; in Grilli er al.’s
scheme, the breaker jet of plunging breaker was performed successfully by using the quasi-singular
integration and regriding technique. With this numerical technique the locations of breaking points
are too close to the shoreline and the breaking wave heights are overestimated.

From Table 4, it can be seen that when the front face of wave profile has a vertical tangent and
the angle of wave profile on crest is smaller than 90 ° and it will be classified as plunging breaker.
For other cases, the breaker is classified as surging breaker.

3.3 Deformation of Wave Profile and Distribution of Fluid Velocities

Fig. 5 shows the deformation of solitary waves on slope s = 1:10 . When a wave with H,/h,
= 0.1 (Fig. 5 {a)) approaches the shoreline, bore occurs. For Hy/hy = 0.2 (Fig.5 (b)), the
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front face of wave profile becomes tilted forward to the shoreline at breaking . For H,/h, = 0.3 and
0.4 (Figs. 5(c) and 5{(d)), plunging breakers arc formed.

Fig. & to Fig.8 show the deformation of solitary waves on slopes s

are the same as in Fig. 5.

1:151t0 1:25; the results

Table 5 Breaking indices for solitary waves on slopes s = 1:10 10 1:25

Slope 1:40 1:15
Hylh, 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Holhy 0.11 0.24 0.3 (0.77* [ 0.43 [0.777 | 0.i2 0,26 [0.51" | 0.39 (0.53" | 0.52 |0.%6"
Hothy 0.29 .56 2.36 [4.98% | 1.42 |3.04° | 0.87 1,58 |3.61" | L.76 (2.76° | 1.77 |2.357
hit by 0.40 0.16 0.15 (0.16" [ 0.30 |0.19" | 0.14 0.16 |0.14% | 0.22 (0.197 | .30 [0.24°
xd g 3.95 1.56 1.54 |1,58% | 3.02 |1.%47 | 2.13 2.45 |2.097 | 3.31 [2.88° | 4.43 {3.40°
i € 0.25 0.57 .00 0.7 0.51 Q.92 L.00 1.00

g 1740 144° 116° B3 1470 g 113¢ 108°
mf Surge |Surge” | Surge |Surge” | Plunge Plunge"| Plunge Flunge ™| Swge |Surge” | Plunge [Plunge* | Plunge Plungs " | Plunge Plunge”
Slope 110 1:15
Hylhy 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Hyf by .t f 0.2 | 0.3 [ 04 | D | G2] 03| 04
Aol by 0.12 [0.37* | 0.27 [0.41° | 0.42 j0.46" | 0.51 |0.51° | 0.18 [0.31" | 0.38 |0.37" | 0.49 |0.43" | 0.47 |0.40"
Hith, 0.65 |3.94" | 1.22 12,50 | 1,42 [2.05" | 1.29 (1.82% ] 1.67 |2.89° | 1.58 (2.00"f L.#d |1.72" | 0.92 |1.56"
Aot hy 0.1% |0.097 | .22 |0.16% | 0.2% |0.22° | 0.40 (0287 1 0.1 |0.117 | 024 (0.18" } 0.3 |0.257 | 0.5 |D.31°
2, Ry 376 | L.B8 | 4.48 (3.24% | 5,85 14,46 | 7.9 |5.507 1 2.67 [2.65" | 6.08 |4,.56" | B.45 |6.26" | I2.65 |7.8%"
ulC f.53 1,00 1.00 0.90 1.00 1.00 1.00 1.00

8 102° 132° 122° g3° 147° 103° 106° 10s°
E:k: Surge Plunge * | Plunge Plunge * | Plunge: Hméz' Plunge Plunge" | Plunge [Plunge ° | Plunge Plunge ° | Plunge [Flunge” | Plunge Plunge

% — breaking indices derived by Grilli et af.

Fig. 9 presents the distribution of fluid velocities on slope s
ties on the front of wave crest are observed.

4. Conclusion

1:20 at breaking; strong veloci-

Solitary waves with incident heights H,y/ky = 0.1 to 0.4 propagating on slopes s = 1:10 ~

1:25 are studied . Breaking criterion is defined when the ratio of horizontal velocity of water par-
ticle on wave crest to wave celerity equals one. In addition, if the ratio of horizontal velocity of
water particle on wave crest to wave celerity is smaller than one but the front face of wave profile
become vertical, it is also considered as a breaking criterion. According to the above criteria,
breaking indices are summarized. The breaker type is classified by the angle of wave profile on
crest at breaking, If it is smaller than 90°, the wave will be considered as a plunging breaker,
otherwise it will be classified into surging breaker.
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