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ABSTRACT

Mumerical study of the breaking criterion of solitary waves propagating on slopes was carried out by means
of boundary element method, the algorithm was based on the Lagrangian description and finite differencing
to time. The shoaling and breaking processes of solitary waves on various kinds of slopes are studied.
According to the criterion defined as the horizontal velocity of water particle on wave cresi equals 1o the
wave celerity, our suggestions of breaking indices for slopes 1:10 to 1:50 are laid out, with which an
empirical formula for the breaking indices was presented. In this article, the deformation of the wave profiles
as well as the distribution of fluid velocities at the breaking region for slopes 1:30 to 1:50 are shown. Our
results showed that when slope varies from 1:10 to 1:25, the breaker type was classified by the angle of wave
profile on the wave crest at breaking, it was considered as plunging breakers if the angle is smaller than
@ =90" , otherwise they are classified as surging breaker, Furthermore, when the slope varies from 1:30 to
1:50, the breakers are mostly classified as spilling breaker.

1 INTRODUCTION

Mumerical studies for shoaling of solitary waves are developed by numerous researchers. Prior
discussions in detail for the propagation of solitary wave are studied by Madsen and Mei [1], they
simulated the solitary waves passing through a mild slope and onto a shelf, reasonable agreement
compared with experimental data was obtained. The propagation of solitary wave and its run-up
against vertical wall are studied by Nakayama [2] using the boundary element method. With the
mixed Eulerian-Lagrangian technique, Kioka [3] investigated the deformation and velocity field of
shallow-water breaking waves. The resultant of two types of breaker, plunging and spilling
breakers, are shown. Kim ef al. [4] discussed the generation, propagation and run-up of solitary
waves by using the boundary integral equation solution, including one single solitary wave and
two successive solitary waves. Grilli er al. [5][6] used a fully nonlinear potential flow wave model
to explore the shoaling and breaking of solitary waves on slopes, with their further extension, a
breaking criterion was then presented. Based on the Lagrangian description and finite differencing
of time step, the generation, propagation and deformation of solitary waves are simulated
numerically by Chou and Shih [7] with boundary element method, time histories of a soliton
running up on a sloping beach and onto a shelf as well as over a submerged obstacle are then
presented, Further studies of the phenomena for solitary waves on various slopes including
shoaling and wave breaking are then investigated by Chou and Ouyang [8][9], the breaking
indices for slopes s=1:1 to 1:25 are proposed.

This article is a further extension of the previous studies by Chou, the shoaling and breaking of
solitary waves on slopes s=1:30 to 1:50 are investigated. Based on the Lagrangian description and



BOUNDARY ELEMENT COMMUNICATIONS: AN INTERNATIONAL JOURNAL VOL. 12, NO, 4, 2001

finite differencing of time step, a fully nonlinear boundary condition on free water surface was
substituted, an algorithm to generated waves with piston type is also implanted in the method. As
solitary wave propagates up to the sloping beach, the breaking criterion is defined as the
equalization between the water particle’s horizontal velocity on the crest and the wave celenity.
The breaking indices are laid out and the classification of breaking type are discussed, the
deformation of wave profile and distribution of fluid velocities are presented as well.

2 THEORETICAL ANALYSIS

Figure 1: Definition sketch of the numerical flume.

By substituting a fully nonlinear boundary condition on the free water surface, the two-
dimensional boundary element method was used to simulate the breaking of solitary waves on
mild slopes. The governing equation, boundary conditions and numerical methods are briefly
reviewed here, all details can be referred to Chou et al. [8][9] and Shih [7]. As shown in Figure 1,
the fluid within the region is assumed to be inviscid and incompressible, and the flow is
irrotational. According to Green’s Second Identity, when the velocity potential satisfies the
Laplace equation.and it's second derivative exists, the velocity potential can be obtained by the
velocity potential on the boundary, @(£,;¢), and it's normal derivative, a®{Z,.¢)/an , i.e.

ox, ;f)= [_[ In : dE, o) lnr}i!
(1)

1If2  on the smooth boundary

1 inside the fluid domain
{_‘ =
0 outside the Muid domain

where r = h’-:}f +(n- :}2]“1 a

The boundary conditions on the pseudo wave generator are assumed that the fluid velocity normal
to the paddle is the same as the horizontal moving velocity of the piston-type wave generator. On
free water surface, fully nonlinear boundary condition was applied, with the assumption that the
atmospheric pressure is constant and equals to zero. For impermeable slope and seabed, the
velocities normal to the boundaries are null. Linear elements are adopted to solve egn(1), forward-
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difference in time was used to obtain the position of free water surface at the following time. The
double nodes numerical technique (Chou, 1988) was applied to the comers which have two
different boundary conditions. Numerical accuracy are verified by the conservation of mass and
energy.

3 NUMERICAL RESULTS AND DISCUSSIONS

3.1 The deformations of wave profiles

To determine whether or not the waves break, various kinds of breaking criterion have been
suggested, e.g., the horizontal velocities of fluid particles on the crest reached the wave celerity,
the angle of wave profile on the crest reaches 6 =120°, the front face of wave profile appears
vertical and the related wave height reaches a specific value. The validity of breaking criterion for
solitary waves on slopes have been discussed in detail by Chou and Ouyang [8][9], which waves
are regarded as critical breaking when the ratio of horizontal velocities of water particles on wave
crest to wave celerity equals one, yet, for some cases which couldn’t reach one, the wave front
already became vertical are also considered as critical breaking. These criteria are adopted for
discussion. All results in this paper can reach «/C =1, where ¥ is the average horizontal velocities
of water particles near the crest and C is the wave celerity calculated by €= Jg{H +h).
Deformations of wave profiles for solitary waves shoaling on slopes 5=1:30 1o 1:50 are shown in
Figure 2 to Figure 6, with the angles of wave profiles marked on both the top of the crest when
u/C =1 and at breaking.

Figure 2 shows the results of waves on slope s=1:30, where Figure 2(a) illustrates the case with
incident wave height of Hy/hy =0.1 approaching the shoreline, the angle of the breaking wave
profile is about #=117" as the wave reaches u/C =1. For Hy/hy =0.2 shown in Figure 2(b), the
wave breaks presently after u/C =1 was reached, the angle of which is 8 =104" at u/C =1, and
#=100" when the wave breaks. Figure 2(c) and Figure 2(d) are the cases with H,/h, =0.3 and
0.4, the angles at the criterion are 101° and 115° respectively.

Figure 3 ~ Figure 6 represents the deformations of wave profiles for waves on slope
§=1:35~1:50. The front face of the wave profile becomes steeper until they break, but it
maintained a bit symmetrical at breaking. By observing the angles marked on the top of the crest
and listed in Table 1, we found an ambit that most angles could be bounded, say, #=90" to
#=120°. This features are quite obvious when Hy/hy =0.2 ~ 0.4, e.g., the angles at breaking
within slope s=1:30~1:50 for incident wave height of H, /hy =0.4 are 103%, 99°, 99° 101° and
93° respectively. However, some results of cases with Hj /h; =0.1 may obtained a larger angle,
by observing the ratio of x; /h; in Table 1, we reasoned that might due to the circumstance that
the simulated waves approached extremely close to the shoreline, as a result of the capable
achievement of our simulations so far for cases with smaller incident wave heights on mild slopes.
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Figure 2: The deformation of solitary waves on slope s=1:30
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Figure 3: The deformation of solitary waves on slope s=1:35.
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Figure 5: The deformation of solitary waves on slope s=1:43.
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Figure 6: The deformation of solitary waves on slope s=1:50.

3.2 The distribution of fluid velocities

The distribution of fluid velocities at breaking for waves on slope 5=1:30 are showned in Figure 7,
with the comparison between incident waves heigth of Hj/hy =0.1-0.4, in Figure 7(d), a greater
velocity appeared on the crest evidently. Also, in Figure 7(b)&(c), the greater velocity appeared
on both the crest and the upper wave front. Figure 8 shows the distribution of fluid velocities at
breaking for waves on slope 5=1:35 with different incident wave heights. The movement of fluid
particles speed up evidently near the crest. According to Chou and Ouyang [9], plunging breakers
existed a strong velocity occurred virtually on the whole wave front with a relatively non-uniform
distribution of fluid velocities. Thus, phenomena for waves simulated here are quite different to
that of plunging breakers. Figure 911 shows the cases of waves breaking on slopes 5=1:40 to
1:50 respectively, the resemblance between the distribution of the greater wave velocity occurred
on the crest are similar to that in Figure 8. By combining the distribution of fluid velocities with
the features of the angle on the crest, also refer our numerical results to experimental observations

presented by previous scholars, these waves are classified as spilling breakers.
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Figure 7: The distribution of fluid velocities of wave breaking on slope s=1:30.
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Figure 8: The distribution of fluid velocities of wave breaking on slope s=1:35.
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Figure 9: The distribution of fluid velocities of wave breaking on slope 5=1:40.
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Figure 10: The distribution of fluid velocities of wave breaking on slope s=1:45.
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Figure 11: The distribution of fluid velocities of wave breaking on slope s=1:50.

3.3 The breaking indices

As mentioned above, the condition of w/C =1 was adopted as a criterion of wave breaking.
According to this, the breaking indices for solitary waves on slopes 5=1:30 to 1:50 are listed in
Table 1, in which the subscriptions b denotes the values at the critical breaking. The related
breaking wave height, H, /h, , are over one except for waves of Hy [hy =0.1 on slopes s=1:40 and
1:50. Considering the breaking wave height H, /hy for Hy/hy =02, the values revealed closely,
same circumstances are found when H; [k, =0.3 and 0.4, that is to say, the variation of slope does
not affect evidently to the breaking wave height as the slopes are mild.
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.Tab]u 1. The breaking indices for solitary waves on slopes 5=1:30 to 1:50.

slope | Hyhy | Hyhy | Ho/hy | hyhe | xo/ho ©® | © at breaking
1:30 01 | 021 | 136 | 015 | 459 | 117 117
02 | 040 | 142 | 028 | 838 | 104 100
03 | 050 | 1.39 | 036 | 1082 | 101 93
04 | 060 | 1.28 | 0.46 | 13.88 | 115 103
1:35 01 | 021 | 1.21 | 017 | 593 | 121 121
[ 02 | 040 | 134 | 030 | 1055 | 94 92
03 | 053 | 1.33 | 040 | 1386 | 100 96
04 | 062 | 127 | 048 | 1695 | 101 99
1:40 | 0.1 0.19 | 096 | 020 | 79 | 123 123
02 | 045 | 136 | 033 | 13.11 | 96 94
03 | 052 | 122 | 042 | 1697 | 118 118
04 | 063 | 123 | 051 | 2040 | 105 99
1:45 01 | o018 | 1.19 | 015 | 6.76 | 135 135
02 | 039 | 104 | 037 | 1658 | 118 118
03 | 056 | 126 | 044 | 19.97 | 101 95
04 | 063 | 1.19 | 053 | 2392 | 103 101" -
1:50 | o1 | 023 | 087 | 027 | 13.25 | 126 126
' 02 | 043 | 1.18 | 0.36 | 18.16 | 102 96
03 | 053 | 115 | 047 | 23.28 | 107 107
04 | 064 | L16 | 055 | 27.53 | 101 93 |

3 Conclusions

The shoaling and breaking of solitary waves propagating on mild slopes with s=1:30~1:50 are
investigated in this stady. The deformation of wave profiles and the distribution of fluid velocities
at the breaking region are then presented. All simulated results in this paper can reach u/C =1. An
ambit around 90° to 120° was observed which the angles of the wave profiles could be bounded
when breaking, although the wave profiles became steeper when shoaling, the wave profiles
maintained a bit symmetrical as it breaks. The distribution of fluid velocities shows that a greater
velocity occurred on the crest evidently. Conclude these observations, also refer our numerical
results with experimental observations presented by previous scholars, waves simulated here are
classified as spilling breakers.
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