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ABSTRACT

    A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectral
shapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of the
flume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of a

Lagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the prob-
km is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varying

the values of the absorption coefficient p, and studying the time histories of the surface elevations "recorded" on pre-se-
lected locations

Key words- numerical wave tank; absorbing beach; irregular waves

1. Introduction

    Correct estimation of all possible environmental forces that might be subjected to is vital

for the stability and durability of oceanic and coastal structures. Among all the forces these
structures might encounter during their service life, wave forces are probably the most impor-
tant. Researchers began to study the problem of wave-structure interaction long ago, and this
has remained an active research topic till the present day. Generally speaking, studies of
wave-structure interaction can be carried out in one of two ways. Physically, a wave tank togeth-
er with physical models can be used, or field experiments can be conducted. On the other hand,

computer algorithms are used to study this problem numerically. However, in a rather strange
way, both these techniques rely nowadays heavily on computers
    In earlier years, generation of waves in laboratories can only be achieved through mechani-

cally controlled wave paddles. These paddles can move only monotonously, so that only regular
waves can be generated. However, ocean waves are of irregular nature. The irregularities demon-
strate themselves through the enhanced crests and flattened troughs, as well as through the
irregular water surface. Benefiting from both the advances of controlling techniques in mechani-
cal engineering, and computing speeds in computer technology, devices with different degrees of
sophistication have been developed. These devices are capable of generating wave fields that are
more realistic in the laboratory. A review concerning the evolution of wave generation tech-
niques in two-dimensional flumes can be found in Mansard and Funke (1988).
    In a similar way, although started some forty years ago, numerical simulation of water

wave problems has enjoyed its boom for the past two decades also from the advance of the
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computer technology. Madsen (1970) studied numerically the problem of water wave generation
and subsequent propagation. Periodic waves were generated by a piston-type wavemaker. He
used linearized governing equations in his analysis. The result is, therefore, highly idealized,
Johnson (1972) numerically solved a variable coefficient Korteweg-de Vries equation, showing
that the result can be used to describe the moving of a solitary wave onto a shelf. The problem
of sloshing in a water tank was considered by Faltinsen (1978) using the boundary integral equa-
tion. Nakayama (1983) used the boundary element method to study the nonlinear water wave
problem. In his study, a velocity potential was assumed but the initial boundary condition was
kept nonlinear. Based on the boundary integral equation, Brorsen and Larsen (1987) presented
a new approach to solve the problem of generation of nonlinear regular waves. Okamura and
Yakuwa (1987, see also Sugino and Tosaka, 1990) analyzed the problem of generation, propaga-

tion, and subsequent deformation of solitary waves in a water tank using the boundary element
method. Invoking Green's theorem, Isaacson et al (1993) used a time-domain second-order
method to simulate the propagation of nonlinear waves in a flume. Chou and Shih (1996) ana-

lyzed the generation and deformation of solitary waves by means of the boundary element meth-
od. Their analysis was based on the Lagrangian description with time derivative. Recent and
fairly comprehensive reviews on numerical wave tank studies can be found in Grilli and Horrillo
(1997) and Kim et al. (1999).

    One of the major difficulties encountered in wave generations, either numerical or mechani-
cal, is that they both have boundaries. Wave reflections and re-reflections from the boundaries

can obscure and interact with waves generated from the paddle and make the results thus ob-
tained unusable. Researchers noticed this problem long time ago, and uncountable efforts have
been made to minimize reflection. A survey of the wave energy absorbing devices commonly
used in laboratories can be seen in Ouellet and Datta (1986). The same idea has also been

adopted by researchers in numerical wave tanks. Clement (1999), in his review of the numerical
wave absorption techniques commonly used by researchers, has divided them into four cate-
gories. These are: the numerical beach or sponge layers, active piston absorber, mesh stretching,
and other methods. In the present analysis, the idea of numerical beach, or a sponge layer is
adopted. This is accomplished through imposing some extra terms in the kinematic and dynam-
ic boundary conditions
    Le M6haute (1972) seems to be the first one who brought up the idea of an absorbing

beach. Later, Larsen and Dancy (1983; see also Brorsen and Larsen, 1987) adopted this idea in
their simulation of the generation of nonlinear gravity waves. Based upon the Boussinesq equa-
tion, Karambas and Koutitas (1992) modelled the propagation of breaking waves. They used an
empirical equation for the dissipation of excessive wave energy, It was shown that good agree-
ment between numerical and experimental results could be achieved. The applicability of their
model is, however, limited only for breaking waves on a sloping beach. Grilli and Horrillo
(1997), in their simulation of the generation and absorption of fully nonlinear periodic waves,
used a dissipative device at the end of their flume. This dissipative device is a combination of an

absorbing beach and a piston-like boundary condition. Kim et al. (1999) pointed out that, ab-
sorbing beaches are more efficient in damping high-frequency waves, whereas radiation type
boundaries are good for low-frequency waves. A combination of these two devices should, there-

fore, be more effective in damping both high and low frequency waves. The results of Grilli and
Horrillo (1997) seem to confirm this.
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    In this paper, the idea of a sponge layer is adopted in the analysis of numerical generation
of irregular waves. The absorbing coefficient K is further divided into two sections -a changing
section, where II changes gradually, and a constant value section, where it remain constant. In
the following, we further divide the rest of the paper into three sections. In section 2, the numeri-
cal scheme is described briefly; the results are presented in Section 3, together with discussions.
And in Section 4 some conclusions are drawn from the present analyses.

                              2. Numerical Analyses

2.1 Governing鞠nations

    As can be seen from Fig. 1, a pseudo- wavemaker is located at the right-hand end of the
flume. The positive x-axis is pointed to the right, whereas the z-axis is pointed positively up-
wards, with the origin of the coordinate system located on the still water level (SWL). A vertical
wall is located at the left end of the flume, opposite to the wavemaker. The bottom floor is as-
sumed to be impermeable. The regime of interest is therefore bounded by the wavemaker at the

right I-,, the free water surface 172 atop, the vertical wall at the left I-,, and the impermeable hot-
tom floor I'a.

                        林
            一 一 ~

Fig. 1. Schematic representation of the numerical lank

    The fluid is assumed to be inviscid, and the motion irrotational as has been usually done
Accordingly, a velocity potential巾(x, z, t) exists, which satisfies the Laplace equation:
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    In the above expressions, D(")is the Lagrangian derivative; u and }v are, respectively, the
horizontal and vertical velocity components of the water particle, g is the gravitational
acceleration, with p representing the surface fluctuation, p the density, and P the pressure on
the fluid surface.

2.2 Boundary Conditions

    On the vertical and bottom boundaries, which are impermeable, the particle velocity of the
fluid normal to it must be zero, thus:

豁一“on F, and F4 (5)

On the surface of the wave paddle, continuity requires that fluid particles follow the veloci
ty of the wave paddle:

。一豁一U (t) on F (6)

2.3 The Sponge Zone

    The sponge zone is composed of two sections, a gradually varying section, where the value
of the absorption coefficient, p, varies gradually, and a constant-valued absorption coefficient
zone. See Fig, 1 for the definition sketch.

    Following Cao et aL (1993), an external pressure is specified on the dynamic free surface,
Eq. (4). This countering acting pressure is defined to be proportional to the normal particle ve-
locity. By doing so, positive work on the fluid body, when this pressure term is assumed to be
proportional to the free-surface velocity potentiaLcan be avoided.

P (x,;)一u (x)豁1ux)] (7)

where y (x) is the beach absorption function, which is assumed to vary smoothly along the sec-
lion xx xB. Grilli and Horrillo (1997), in their analysis, have used an absorbing coefficient that
is a function of both time and space, which, with the present expression, can be written as:

;(x, t)=。。(‘)。侧gha(xs一xB ) (8)

where B= xa一x, is the length of the varying-value section and?)1. As can be seen from
Fig. 1, a value of y=1 is used in the present analysis. The absorbing coefficient is therefore as-
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sumed to vary linearly

2.4 The Numerical Scheme

    The continuity equation in the differential form, Eq. (1), can be transformed into a bounda-
ry integral equation by the use of Green's second identity. The velocity potential at any point
within the domain of computation, Q+ (x, z, 1), can be expressed by use of the velocity potential
on the boundary, (D (}, q; t), and its normal derivative, 8 (D(g, z; t)/ 0 n through:

    (h (x, Z; t)一_I  ({  00 (}, q; 1) In ( I2rz         On         r)一，(;，，;，)it)on [ln(r)]}ds          (9)
                                                      r

where r二4(}一二)，+(，一:)，，Close to a boundary point(‘，，q'), the velocity potential of
this point is expressed through:

中W, q'; t)一Irz丁{8} (韶 t)On     In( R)一，(;，，‘!)i1t) G7t〔，·IRIJ卜 (10)

where R= 4‘一‘，，+(，一，，)，.
    The boundaries, T, through 174, are divided into, respectively, N, to N, discrete linear ele-

ments. With the introduction of a local dimensionless coordinate, the integral equation can be
expressed in the matrix form:

【。，1一[o;,]冲 1= 1̂ 4

where [0] and [ro) are, respectively, the velocity potential and its associated normal derivative.
The coefficients of the matrix [01 are related to the geometric shapes of the boundaries. Detailed
expressions of these matrixes can be found in Chou and Shih (1996)
    Substituting the initial boundary conditions into Eq. (11) gives the value of the velocity po-

tential on the boundary of the wavemaker,。{，the normal derivative of the velocity potential
of the free surface i-2 k,and the velocity potentials on the fixed

and。:at the k-th time step. Differentiating the time derivatives
impermeable boundaries,。:
in Eqs. (2), (3) and (4), using

and

(l2)

forward difference, one obtains the new positions of the free water surface, (x k+’，Zkt’)，
the velocity potential on the free water surface,。:“，at the next time step,，一(*+，)△，as

。:一。:+盖[ ( aa? ) ,+ ( va Z ) ,I△卜9k+ igZ    01-
where s and n denote, respectively, the tangential and the normal direction. The normal deriva

tives on the boundaries r,, T3 and

can be obtained by use of Eqs. (5)
form:

r4, ', e币{+}, }6:十’and }4{’，at t、二step，一(、+1)et
and (6). These can be written more compactly in a matrix
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where 1  is the identity matrix. the details of the numerical procedures can be found in
and Shih (1996).

    The computational domain is discretized into, respectively, 11 nodes for both the vertical
wall at the left end and the wavemaker on the right hand, 51 nodes for the impermeable bottom,
and 239 nodes for the free surface. This is shown schematically in Fig. 2. A constant time step of
At= 0.0025 s is used in the computation. It is well known that numerical errors are the function
of the size of both the spatial and temporal steps. Researchers have found that these errors can
be minimized if the Courant number is kept small. The Courant number can be defined as:

， 厂-了 At

t.o=、gn石 -1u。 (14)

where Ax and At are the spatial and the temporal discretization interval. According to the pres-
ent discretization scheme, the Courant number is in the range of 0,157--0.391, for Ax= 0.2~
0.5 m on the free surface. It can therefore be claimed that the stability of the present numerical
scheme is guaranteed.

239 nodes

四」卜 a二卜 0.21

Odk OAk_/
0.41

03h OAh 05F 05h 06h

r Y1= 101妞 B=sm
为

11nodes h=1m

眨
Spone Zone
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_ 5On口

Fig. 2. Scheme for the disaetization of the computational domain

2.5 Random Wave Simulation

    The Bretschneider-Mitsuyasu spectrum is used as the target spectrum for the generation of
random waves. It can be expressed as
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where H�3 is the significant wave height, T�, is the associated significant wave period, and

f is the frequency. The spectral peak
through (Goda, 2000)

fn

frequency,苏，

          1

is related to the significant wave period

1.05T  '/' (16)

In general, the surface fluctuations can be expressed either by use of

;(?△!卜蔓[一(2njAfmAt)+”，sin(，、△，)]

C (mAt)=    [ A . cos (2njAfmAt+，)j0，，一“

(17)

orthrough

(18)

Where

Af=斋
            1甲 渡，成

(19)

in the frequency resolution, At is the time discretization, T=NAt is the total length (time) of
the surface records, N is the total number of sampling points in the time domain, and m= 1, 2,
·，N. In助，(17), both the amplitudes, aj and屯are independent random variables that are nor-
mally distributed with zero mean, with standard deviation equal to

。一，S (2nj胡2nAf (20)

The amplitude Aj in Eq. (18) is directly related to the spectral density through

A，一，2S (2njAj) Act一2 q S (2njAj) nAf (21)

and the phases rpj are assumed to have a uniform distribution with zero mean and unit variance,
i, e., tpj--2nU[0,1 ]. Depending on whether Eqs. (17) or (18) is used, the random wave simulation
procedure is either non-deterministic or deterministic (Tuah and Hudspeth, 1982). In this study
the latter method is adopted.

    Similar to that in physical applications of the wave generation theory, a transfer function
must be multiplied to obtain the spectrum for the motion of the wave generator

S,仍=“切S仍 (22)

where a仍denotes the transfer function. From linear, i. e., first-order, theory,“仍is equal to
(Hughes, 1993)
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·。一【m,。。} (23)

where m ,切 is the transfer function of the wave amplitude and the stroke of wave-generator
St. For a piston type wave generator

m1
_生_ 2 sinhz (kh)
  St;   sinh(2kh)+2kh

(24)

where a;‘the respective amplitude of the associated frequency components and h is the
depth. The frequency dependence of the transfer function
wavenumber k is related to the frequency f through the linear

is omitted for simplicity
water
  The

dispersion relation

                        。，=gk tanh (kh)                                  (25)

    In this study, four significant wave periods have been used in combination with six values
of the absorbing coefficients. Table 1 summarizes the experimental conditions used in the numer-
ical experiments. As can be seen from Table 1, a total of 24 numerical experiments have been car-
tied out.

Tab卜 t Conditions used for the numerical experiments

Significant wave he讼ht

      H/，(cm)

Significant wave period

    Ti/3 (sec)
Absorbing coefficient

        (N)

10 1.2 0.0 0.025 0仍 0.10 0.15 0.20

10 1.3 0.0 0.025 0.肥 0.10 0.15 0.20

10 1.4 0.0 0.025 0.05 0.10 0.15 0.20

10 1.5 0.0 0.025 让05 0.10 0.15 0.20

3. The Numerical Analysis

3.1 Analysis of Results

    A 50-meter long numerical wave tank is used in this study. The water depth is 1.0 meter. Fa-
cing the wave tank, a piston wave generator is located at the right hand end, while a vertical
impermeable wall is at the left end. To dissipate wave energy incident from the right-hand end,
an absorbing beach is imposed on the left-hand end. As mentioned earlier, this absorbing beach,
composed of imaginary external pressure, is divided into a gradually varying section and a con-
stant value section. The former has a length of 5 meters, and the latter is 10 m long.

    To monitor the development of irregular waves along the wave tank, a total of 14 wave sta-
tions are selected. They will be called, starting from the still position of the piston, Stations 1一
14 hereafter. Table 2 lists the number of the stations and their respective distances away from
the vertical wall at the left end of the wave flume. Stations 9-- 11 are used to determine possible

reflections from the absorbing beach; whereas Stations 3-5 are used for the same purpose but
are, however, for reflections from the wavemaker.
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T日ble 2 The pseudo wave stations and their locations

Station No. 14 13 12 1l 10 9 8 7 6 5 4 3 2 1

Distance (m) 0 8.7 127 16.3 16.5 16-7 247 28.7 32.7 36.3 36.5 36夕 40.7 44夕

    Recordings of surface fluctuations start as soon as wave generation has been initiated, and
this is done simultaneously for all wave gauges. After surface fluctuations are obtained from cal-
c ulation, spectral analyses are performed. In an attempt to increase the degrees of freedom
(DOF) in the spectral estimates, wave records are first divided into segments with 50% over-lap-
ping (Otnes and Enochson, 1972). Then, a partial cosine taper function is added to each seg-
ment so that side-lobe leakage can be minimized (Bendat and Piersol, 1986). The data are Fast
Fourier Transformed (FFT), and a rough, two-sided spectral estimate can be obtained. A
smooth estimate of the spectral density can then be obtained through ensemble averaging. A fi-
nal smoothing of the spectral densities is carried out in the frequency domain using a Harming

window (Benda( and Piersol, 1986).
    Depending upon the discretization time interval of the wave records, At, the DOF of the

spectral estimates ranges from 2 to 44, whereas the associated frequency resolution, is,
respectively, Af= 0.0195313-0.3125 Hz,

3.2 Results and Discussion

    Owing to the large amount of calculated data, we will, therefore, concentrate ourselves on
results obtained at Station Nos. 1, 6, 9 and 13. As can be seen from Fig. 1. Station No. 1 is situat-
ed just in front of the wavemaker, and Station No. 6 is located approximately in the middle of
the section between the wavemaker and the absorbing beach. For illustration of the effect of the
absorbing beach, Station No. 9, which is in front of it, and Station No. 13, which is within the
constant-coefficient section of the absorbing beach, are chosen
    Figs. 3A-3D show the developments of random waves along the wave tank. Waves under

consideration have a significant period of T�。二1.2 s, with a significant wave height of N�a=
10 cm. The absorbing coefficient for this case is ju二0. From Fig. 3 it can be seen that, with in-
creasing distance away from the wavemaker, the number of waves decreases. The exact reason
for this result is not clear at present. It is conjectured that this is probably due to the fact that
simulated random waves contain too many so-called "false waves" (Gim6nez et al.,  1994;
Pires-Silva and Medina, 1994). This can be clearly seen from Fig. 3A at t二4-- 10, 15- 17 and
42-50 seconds. As pointed out by those authors (see also Medina et a1,1995) the existence of
these false waves will not only seriously distort the statistical properties of the wave field, but an

increasingly broader energy spectrum will also result with the increasing number of false waves
contained in the "wave record".

    There is another plausible explanation for the decrease of the number of waves with, howev-
er, increasing wavelengths for records measured at downstream stations. Since the surface eleva-
tions are composed of linear waves, the waves with larger wavelengths will naturally travel fast-
er and reach the downstream end earlier. In our numerical simulations, calculations are often fo-
reed to terminate when reflected waves have reached the wavemaker. Since the present wave

tank is rather short, 50 m, only a limited number of waves will be present in the flume. As a re
sult, the downstream stations can measure only waves with large wavelengths.

万方数据



262 Chung-Ren CHOU et at

︵后
︶
污
习
‘
工
山

︵‘口
︶
召
旧
静卫
田

Time (sec) Time (sec)

，
五

0

︵后
︶
启
习
己
一川

 
 
，
.

卜
目

︵后
︶
.
渭
万
乙
闷

(C) (D)

20      as

      Time (sec)

自 即 20 初

      Time (sec)

印 日0

珑.3. Evolutions of irregular waves along the wave tank
        Figs. 3A--3D: station Nos. 1, 6,9 and 13.

Case studied: Eretscheider-Mitsuyasu spectrum with H, , 3= 10 ctrl
        T,,= 1.2 s, without absorbing beach, L e., k二0.

    Figs. 4A-- 4D are the estimated spectral densities of the wave records shown in Figs, 3A--
3D. As can be seen from these figures, the spectral peak moves progressively toward lower fre-
quencies. It is believed that the reason for this to occur is, as stated above, only longer waves
with faster phase speeds can be measured by these stations.
    For demonstration of the effect of the magnitude of the absorbing coefficient on the devel-

opment of waves, three different values of y are chosen. These are shown in Figs. 5- 8, for,
respectively, p=0.025 and 0.20. It can be seen from these figures that, with the implantation of
the absorbing beach, the energies of waves decrease. Figs. 5 and 7 show the development of
irregular waves along the flume. The waves shown in these figures have significant periods of 1.3
and 1.5 seconds, respectively. It can be seen that there is an upward trend occurring in the wave
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Fl二4. Spectral densities of irregular waves along the wave tank
F讼. 4A-4D: station Nos. 1, 6, 9 and 13. Case studied: same as Fig. 3

flume. This can be clearly seen from the figures of surface fluctuations measured at the far end
of the flume, i. e., Station No. 13, as shown in Figs. 5D and 7D. The exact cause of this trend is
not clear. As mentioned earlier, the time series are trend-removed prior to spectral analyses, The

fact that this trend remains even after this procedure indicates that, an up to 5t" order
polynomial approximation of the trend is ineffective in its removal. Since, however, this upward
trend is absent in the absence of the absorbing beach, it must be caused by its presence.
Furthermore, it is found that, as the magnitude of the absorbing coefficient, p, increases, the
slope of this trend also increases (not shown here). Grilli and Horrillo (1997) pointed out that
the use of the fully nonlinear boundary conditions will lead to a net mass transport of the calcu-
lated results. Whether this is the reason for the existence of the trend must await further investi-

gation.
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Fig. 5. Evolutions of irregular waves along the wave tank
        Figs. 5A-5D: station Nos. 1, 6, 9 and 13.

Case studied: Bmtschneider-Mitsuyasu spectrum with H�3 = 10 CM-

        T_ = 1,3 s, with absorbing beach, i, e., N = 0.025,

    Spectral densities corresponding to the developments of random waves shown in Figs. 5
and 7 are shown in Figs. 6 and 8, respectively, A couple of interesting points are worth men-
tioning

    一 Unlike for the case with the lowest significant wave period, T�,二1.2 sec, the spectral
shapes for Station Nos. 1 and 2 have an appearance close to that of wind waves.
    一 As waves evolve, their spectral densities diminish. The larger the magnitude of the ab-

sorbing coefficient, the faster the rate for the energy to decrease.
    一The effect of the upward-going trend can also be clearly seen through the increase of the

spectral density near low frequencies
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          Figs. 6A-6D: station Nos. 1, 6, 9 and 13.
                Case studied: same as Fig. 5-

4. Conclusions

    Generation and propagation of random waves along a wave tank are studied with the
boundary element method. The Bretschneider-Mitsuyasu spectrum is used as the target for
simulation of random waves to be generated by a piston. Incident wave energies are dissipated
through an absorbing beach at the other end of the wave tank. The efficiency of the absorbing
beach is studied by varying the values of the absorbing coefficient. It is concluded that
    一The process of random wave generation and dissipation can be studied with the bounda-

ry element method. It is demonstrated that with the implantation of a sponge layer at the other
end of the flume, the wave energy will be damped, and the duration of simulation thereby elon-
gated. However, it is found that.
    -A 50 m numerical wave tank is probably too short for simulation of random wave gener-
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ation. For the wave

nificant period, T,/3

data used in this study, according to Eq. (16) the waves with the lowest sig

=1.2 sec have a peak frequency of探、0.3 Hz. This corresponds to a phase
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Fig. 7. Evolutions of irregular waves along the wave tank
        Figs. 7A-7D: station Nos. 1, 6, 9 and 13

Case studied: 8retschneider-Mitsuyasu spectrum with A, , 3二10 cm

T_ } 1.5 s, with absorbing beach, i, e., N，0.20

velocity of Co浇  195.2 cm / sec
tank in approximately 25 sec.
shows that there will be only

in deep water. The waves will therefore reach the end of the wave
Since the length of dominant waves is 244 cm, a rough estimate
粼〕~50 dominant waves in the wave tank

reach the wavemaker. It is conjectured that with this amount of waves

densities could be biased (Goda, 2000).

when reflected waves

the estimated spectral

一An absorbing beach, or sponge layer, at the far end of the wave flume can effectively de-

crease wave energy in the flume
一However, there is an upward trend associated with the implantation of the sponge layer
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at the other end of the flume. The slope of this upward trend increases with the increasing value
of the absorbing coefficient. The exact reason for this upward trend to occur is not clear at pres-
ent
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Fig.民 Spectral densities of irregular waves along the wave tank
          Figs, 8A-8D: station Nos. 1, 6, 9 and 13.

Case studied: same as Fig. 7

    一Concentration of energy in the low frequency part of the spectra seems to indicate that
there are long waves in the numerical tank. Kim et al. (1999) pointed out that, numerical
beaches are ideal for absorbing energies of short waves, and fail to work for long waves. To ab-

sorb the energy of long waves, an active wave absorber must be installed at the end of the flume
opposite to the wavemaker. This willbestudied in the near future,
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