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ABSTRACT

The modeling of generation and subsequent propagation of irregular waves in a numerical wave flume is performed by
mean of the boundary element method. Random waves are generated by a piston-type wave generator at one end of the
flume with the Mitsuyasu-Bretschneider spectrum used as the target spectrum for the generation. An artificial absorbing
beach is placed at the other end of the flume to minimize wave reflection. Surface fluctuations are described by use of the
Lagrangian description, and finite difference is adopted for the approximation of time derivative. To monitor the develop-
ments of the waves, a number of pseudo wave gauges are installed along the tank. Through comparison of the spectra from
those gauges with the target spectrum, satisfactory results can be obtained from the present numerical scheme.
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1. Introduction

Coastal and Oceanic structures are constructed to endure the most severe environmental forces
during their lifetime. Of all possible forces, wave forces are often considered to be the dominant ones.

Wave forces acting on a structure can be determined either by measurement through physical mod-
el tests or by use of numerical algorithms. In the latter case it is customary to estimate wave forces with
the Morison equation. The major problem associated with the Morrison equation is that, however, the
drag force is in quadrature with the horizontal water particle velocity on the free surface, which is not
known from existing wave theories. Various schemes have been proposed to extrapolate water particle
velocities from the still water level to the free surface. A fairly detailed comparison of the merits and
demerits of these methods can be found in Gudmestad and Spidsge (1990; see also Tgrum and Skjel-
breia, 1990). On the other hand, forces due to breaking waves are believed to cause more damage
than unbroken ones. However, owing to the turbulent nature, it is even more difficult, if not impossi-
ble, to measure broken wave forces acting on a structure.

Most of the above-mentioned difficulties can be overcome when a researcher knows the properties
of the waves along their track of evolution all the time. There is a possibility that such opportunities
can be provided by a numerical wave tank. In the tank, waves are initially generated by a pseudo
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wavemaker; the subsequent developments of these waves along the tank are modelled by solving some
governing equations .

Although started some thirty years ago, numerical estimation of wave characteristics through nu-
merical models has been largely developed only quite recently due to the rapid advance in computer
technology in the last decade. The generation of nonlinear waves with boundary integral equations was
subsequently considered by Brorsen and Larsen (1987) . Sugino and Tosaka (1990) used the boundary
element method to analyze the generation, propagation, and subsequent deformation of solitary waves in
a water tank. Invoking Green’s theorem, Isaacson et al. (1993) used a time-domain second-order
method to simulate the propagation of nonlinear waves in a flume. Chou and Shih (1996a, 1996b) de-
veloped a wave model using the boundary element method for modeling the generation and deformation
of both periodical and solitary waves; their scheme was based on the Lagrangian description of fluid
with time derivative approximated by finite differencing.

The majority of the above-mentioned researches deal with the generation and propagation of regu-
lar waves. Very often, waves are of the monochromatic nature, i.e., they have one “carrier frequen-
cy”. However, like many natural phenomena in the world, water waves are nonlinear. Subjected to the
nonlinear boundary conditions, high harmonics will be generated and regular waves tend to deform in
the course of development. To model this effect, Grilli and Horrillo (1997) used fully nonlinear
boundary conditions. In a recent paper, Williams (1999) considered the generation and propagation of
second-order Stokes waves. A novel second-order radiation boundary condition was applied at the far-
field boundary. The results were found to be satisfactory when compared with experiments.

However, waves in the ocean are generally both random and quasi- regular, and the wave profile
varies constantly with time and in a random fashion. Consequently, the properties of surface waves are
not readily defined on a wave-by-wave basis. On the other hand, a realistic numerical wave tank
should be capable of modeling the generation and development of irregular waves.

Recently, Xu and Baddour (1999) reviewed the results of simulating the propagation of nonlin-
ear, irregular waves in two- and three-dimensional numerical basins. The basins were quipped with
wave -absorbing beaches. In their model, the so-called Green-Naghdi fluid sheets theory was used.
Chou et al. (2001) modelled the generation and propagation of irregular waves in a 2D wave basin,
and a spectrum of the Mitsuyasu-Bretschneider type is chosen as the target one. However, probably
owing to the numerical dissipation of the scheme, only waves with large wavelengths were found to
reach the beach.

The scheme of Chou et al. (2001) is further improved in this paper. Its application to the gener-
ation of irregular waves reveals that the improved numerical scheme is capable of describing the propa-

gation of irregular waves satisfactorily.

2. Numerical Scheme

2.1 Governing Equations and Basic Assumptions

As shown schematically in Fig. 1, the numerical wave flume is confined in a region composed of
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a piston type wave generator located at the right, the undisturbed free water surface, an impermeable
vertical wall and an impermeable bottom. Cartesian coordinates are employed; the origin is located on
the still water surface with the z-axis pointing positively upwards. Unlike Williams (1999), who used
a semi-infinite boundary condition, we have adopted a vertical wall at the left end of the flume as
boundary in our analysis so as to bear more resemblance to the physical wave generation. The regime of
interest is bounded by the pseudo wave board I';, the free water surface I'5, the vertical wall I'3, and
the impermeable bottom floor I'y. The boundaries are discretized as linear elements.

The fluid within the region is conventionally assumed to be incompressible, inviscid, and irrota-
tional. According to Green's second identity, the velocity potential ®@(x, z, t) must satisfy the fol-
lowing Laplace equation:
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Fig. 1. Definition sketch of the numerical wave flume.

2.2 Boundary Conditions

The horizontal and vertical components of the water particle velocity, u and, w can be expressed

as:
Dz _ 90
“= Dt T ax’ (2)
and
D: _ 29
weDz_ 22 3)
In the Lagrangian form, the dynamic free-surface boundary conditions is then written as:
DP IPp ap\?1 P
e (22 (2] 2 - ®

Q
where, D( ) is the Lagrangian derivative; g is the gravitational acceleration; with { representing the

surface fluctuation; p is the density of water; and P is the pressure on the water surface.
The boundary condition on the wave-paddle is obtained by matching the horizontal velocities of the
paddle and those of the fluid through the following association:
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@:g—fz—U(t), on I (5)
where n is the unit outward nomal vector.

Since the particle velocity is null in the normal direction on the impermeable vertical wall and the
bottom floor, the condition is prescribed as:

d
92 _ 0,  onI,and .. (6)

In
2.3 Random Wave Simulation
The Bretschneider-Mitsuyasu spectrum is used as the target spectrum for the generation of rregu-
lar waves, which can be expressed as:

So(f) = 0.25TH3 5 Ti/fexpl - 1.03( Ty 5f) 4] (7)

where H| s is the significant wave height; T, is the significant wave period;and f is the frequency.

According to Goda (2000), the spectral peak frequency, f,, is related to the significant wave
period, T,:

fo = /T, (8)

where 7,=1.05T,,;. Similar to the case of physical applications of the wave éenemtion theory, a

transfer function must be multiplied to yield the spectrum for the motion of the numerical wave genera-

tor, thus,
S(f) = a(N)?+ S(f) (9)
where a (f) denotes the transfer function of wave amplitude and the stroke of wave paddle. In the pre-

sent study, a piston type wave generator is investigated, hence,

sinhkhcoshkh + kh
a(f) = 2sin® kh
where, k is the wave number and h is the water depth. Neglecting the excessively small or large peri-

(10)

od, the associate period resolution can be express as:
Twin < T < Tppy- (11)
Here, T, =0.5 sec and T, =4.5 sec are chosen. The surface fluctuations can be expressed as:

£(t) = O, V2d5(f,) -+ cos(ant - €,), (12)

n=1
o, =27fy, (13)
where ¢, and V denotes a random variable number between 0 ~ 2w and the total number of sampling,
respectively .
The horizontal velocities as well as the boundary conditions on the wave-paddle, i.e. Eq. (5),

are therefore obtained with

U(t) = 2, vV 2dfSe(f,) + a(f) * cos(ant - &,). (14)
2.4 Deployment of Sponge Zone _

It is well known that numerical models should have a limited domain. Many researchers resort to
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the fact that wave reflection can be reduced by use of some absorption techniques. In this paper we
have adopted the idea of an absorbing beach, as shown in Fig. 1. The absorbing beach is composed of
two sections: an area with a smoothly varied absorption coefficient ¢« and an area of constant s .
Absorption of free surface waves including various conditions is discussed by Cao et al. (1993)
and Clément (1999); an external pressure in Eq. (4) is specified on the dynamic free surface, and
the value of P employed by Grilli (1995) was defined proportional to the normal derivative of the po-
tential energy on the water surface. In the present research, however, as in most approaches suggested
earlier, the value of P is defined proportional to the potential on the free water, thus, P(x, § ) is
expressed as:
P(x,8) = u(x)®(&,79,t) (15)
where z(x) is the beach absorption function, which is assumed to vary smoothly along section x, —

%5, but remain constant after x,. The absorbing coefficient can be expressed as:

px.t) = (0o 22E), t < % < 23 (16)
w(x,t) = po(t)p, x < %, (17)
where B = x, — xp is the length of the varying-value section. As can be seen from Fig. 1, a linear

absorption parameter is adopted in this paper, i.e. a = 1. It is believed that, by doing so, the re-
sults are not seriously affected. The physical meaning of the absorbing area (referred to as the sponge
zone) can be representative of various kinds of armor units placed behind the wave flume in reality
whose damping coefficient is generally assumed to remain constant and proportioned to the potential en-

ergy . The optimized deployment of the sponge zone for periodical, as well as solitary waves was investi-

gated by Chou et al. (2002).

2.5 Integral Formulation and Boundary Discretization

According to Green's second identity, the velocity potential @(x, z; t) for inviscid irrotational
flow can be obtained by use of the velocity potential on the boundary, d(E, 73 t), and its normal
derivative, dP( &, 73 t)/9dn. The continuity equation in the differential form, Eq. (1), can thus be

transformed into a boundary integral equation:

P(x,z;t) = ﬁi{@%{w—”ln(%)—@(E,r);t);n[ln(%)]}ds (18)

1 inside the fluid domain
c = {1/2 on the smooth boundary

0 outside the fluid domain

where r=«/(E—x)2+ (77—2)2.
The boundaries, I'; through Iy, are divided into V; to N4 discrete linear elements respectively .
When the inner point (x,z;¢) approaches the boundary point (', 7' ;¢), the above equation can be

written in a discretized form as:

b N Jd . 1
O;(&,9'518) + ;%Jq[@,(s,q;x)m + d5j+1(5,77;t)M2] 5‘7—1]n7ds
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Y IP, ; J
_ _:?EJF[ @'(E;JZ’I)M l+1(5 73 t) ] %ds (19)
1

where, r=v (6-€)+ (- 7]')2; My =(1-x)/2; My = (1+ x)/2, M; and M, being the
shape function within ¥, the local dimensional coordinate. Hence, for the operation of calculation,
Eq. (19) can be expressed in the matrix form:

(@] = [O;][@;); i,j=1~4 (20)
where [ @] and [@] are, respectively, the velocity potential and its associated normal derivative. The
coefficients of the matrix [ O] are related to the geometric shapes of the boundaries. Detailed expres-
sions of the numerical scheme and these matrixes are given in Chou and Shih (1996a, 1996b) .

Two discretization schemes are used in the analysis to test the effects of the sizes of the meshes.
A rather fine temporal resolution is chosen primarily with Az = 0.0025 s, and a resolution of At =
0.005 s is adopted subsequently. On the other hand, for the saving of computer storage and computa-
tion time, the spatial resolutions are varied. Coarser meshes are used at both ends of the flume, and
they are then varied gradually when approaching the middle of the flume. The smallest mesh sizes
adopted for the computation are, respectively, Ax = 0.05h for the former case, and Ax = 0.10h
for the latter, h being the water depth. The discretization schemes are exhaustive in Figs. 2(a) and 2

(b).
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Fig. 2. Discretization scheme.

The time histories of surface elevations are measured by a total of 14 pseudo wave gauges, and the
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measuring stations are used to record the developments of irregular waves along the wave tank. Here-
after they will be called, starting from the wave-paddle, Station 1 ~ Station 14. Table 1 lists the num-
ber of the stations and their distances from the origin.

Spectral analyses are carried out in the usual way as were done for field data. The wave records
are first checked for possible outliers (Chen and Ma, 1991), which may result from the sudden break-
downs of the computer during simulations. Once a possible outlier is detected it will be corrected ac-
cording to a procedure proposed by Chen and Ma (1991) . Afterwards, the wave records are divided
into segments with 50% over-lapping. In this way the degrees of freedom (DOF) in the spectral esti-
mates can be largely increased (Otnes and Enochson, 1972). A partial cosine taper function is also
added to each segment so that side-lobe leakage can be minimized (Bendat and Piersol, 1986). How-
ever, it is believed that since the “wave records” is relatively short, and contain fewer waves than field

data, these procedures could, at least, increase the degrees of freedom of the spectral estimates.

Table 1 The pseudo wave stations and their locations
Case A Case B
Station No. Distance from the origin Distance from the
(m) origin (m)
1 29.95 31.3
2 28.95 30.3
3 27.95 28.3
4 26.95 26.3
5 25.95 25.3
6 24.95 24.3
7 22.95 22.3
8 21.95 20.3
9 20.95 18.3
10 19.95 17.3
11 17.95 16.3
12 15.95 15.3
13 13.95 14.3
14 11.95 12.3

Each segment was separately Fast Fourier Transformed (FFT), and a rough, two-sided spectral
estimate can be obtained. Smooth estimate of the spectral densities is obtained through ensemble aver-
aging. The Hanning window applied in the frequency domain leads to the final smoothing of the spec-
tral densities ( Bendat and Piersol, 1986) . Depending upon the discretization time intervals of the wave
records, At, the DOF of the spectral estimates ranges from 2 to 68, with the corresponding frequency
resolution in the range of Af = 0.00976563 ~ 0.3125 Hz.
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3. Results and Discussion

3.1 Efficiency of Absorption

Fig. 3 shows a comparison of the time histories of random wave generation with and without ab-
sorption technique, i.e. g =1.0 and z =0.0, respectively. The efficiency of absorption for regular
and solitary waves has been investigated by Chou et al. (2002); a value of z = 1.0 gives satisfactory
results for both solitary and regular waves. However, the same coefficient might not be well employed
for train of irregular waves; therefore, even though an absorbing technique is employed in the model,
still, a small number of waves reflected from the vertical wall and the wave paddle inevitably contami-
nate the incident wave train. As can be seen from Fig. 3(a), partial reflection of irregular short-crest-
ed and/or long-crested finite-amplitude waves is formed in the vicinity of the vertical wall, whereas this
appearance is not conspicuous in Fig. 3(b). Fig. 4 reveals the efficiency of absorption for irregular

waves in a 3-dimensional graphic corresponding to Fig. 3.
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Fig. 3. Comparison between the time histories of the developments of irregular

waves along the numerical wave tank.

3.2 Effects of Peak Frequency

Fig. 5 reveals the surface fluctuations of random waves measured by the fourteen pseudo gauges,
and the corresponding spectra are shown in Fig. 6. The significant wave height H; 3 and the significant
wave period T3 are 2.5 c¢m and 0.8 sec, respectively. This is the case with the highest peak fre-
quency considered in all the numerical simulations. The temporal discretization step used is At =
0.0025 sec, with the smallest mesh size of Ax = 0.05h.

It can be seen from Fig. 5, starting from Station No.7, at approximately 20 seconds, a wave

group with a permanent form seems to have been formed. This wave group keeps its identity and travels
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Fig. 4. 3-Dimensional sketch of the developments of irregular wave propagation along the wave flume.

down to the end of the flume. This occurrence is interesting, since it is well known that, for deep wa-
ter waves, the effects of nonlinear wave-wave interactions, and thus the transfer of energy between
wave components, occur at the third order of the wave steepness ( Phillips, 1981). Wave groups with
permanent forms, or solitons, are known to form in wave trains having a “ carrier frequency” ( Yuen
and Lake, 1982). As shown by Hasselmann (1962), for irregular waves with a Neumann-type spec-
trum, which is equivalent in form to the Mitsuyasu-Bretschneider spectrum used here, energy transfer
occurs only at the fifth order. It is therefore concluded that the wave group seen in Fig. 5 is not the re-
sult of nonlinear wave-wave interaction. However, further investigations are needed to clarify this phe-
nomenon. From Fig. 6, it is seen that wave energy decreases as waves propagate toward the end of the

flume. This, however, is not the result of the absorbing heach, as can be seen from the figures to be
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presented later.
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Fig. 5. Developments of irregular waves advancing from Station Nos. 1 ~ 13.
The conditions are: significant wave height H ;3 = 2.5 cm, significant wave period T3 = 0.8 sec,

At = 0.0025 sec, and Ax,,, = 0.05h.
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Fig. 6. Spectra of irregular waves and the variation along the numerical wave tank .
The conditions are: significant wave height H,; = 2.5 e¢m, significant wave period T, = 0.8 sec,
At = 0.0025 sec, and Ax,,, = 0.05h.
Figs. 7 and 8 show the developments of those waves with a significant wave period of T},3= 1.1
sec. The discretization scheme used for this case is the same as that of Fig. 5. Since the Mitsuyasu-
Bretschneider spectrum is an empirical formula based on wave records measured on the open sea, the

energy level of this spectrum increases with the decreasing value of the peak frequency. As a result,
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Fig. 8. Spectra of irregular waves and the variation along the numerical wave tank. The conditions are:
significant wave height H,3= 2.5 cm, significant wave period T3 = 1.1 sec, At = 0.0025 sec,
and Ax = 0.05h.

waves in Fig. 7 have larger wave heights than those in Fig. 5. Notice also that, although the energies
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of the waves diminish as they propagate down the flume, some of those last four stations, as shown in
Fig. 8 and are found to have higher spectial densities than those at Station Nos. 8 ~ 10. This fact can
also be seen later in Fig. 12, where the spectral variations for all the fourteen stations are also shown.
It is conjectured that this is due to the presence of partially reflected long waves from the numerical
beach. As these wave groups begin to depart from each other, high frequency waves are thus “generat-
ed” between these wave groups. Whether these high-frequency waves correspond to the “false waves”,
as called by Giménez et al. (1994; see also Pires-Silva and Medina, 1994), is presently uncertain.
It should be noted that, to avoid numerical instability, the discretization time steps should be small,
and any small fluctuation could be treated as a high-frequency wave. Since the frequency resolution is
closely related to the discretization time step, a small Az will inevitably lead to a small Af; thus, a
combination of these two effects could and is expected to add inaccuracies to the present numerical re-
sults. Through comparison of Figs. 6 and 8, it is concluded that, in the present numerical scheme,

the energy of high frequency waves decreases more rapidly than that of low frequency waves.

3.3 Effect of the Discretization Scheme

The quantity of discrete elements determines the simulating time. By use of a 2.8 GHz CPU per-
sonal computer, it takes about 15 sec per time-step for mesh sizes of Ax = 0.05h; yet it only takes
approximately 4 sec per time-step for Ax = 0.10h. Figs. 9 ~ 12 demonstrate the effect of a coarse
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Fig. 9. Developments of irregular waves advancing from Station Nos. 1~ 13. The conditions are:
significant wave height H,,; = 2.5 cm, significant wave period Ty,3=1.1 sec, At = 0.005 sec,
and Ax;,, = 0.10h.



Ruey-syan SHIH et al ./ China Ocean Engineering, 1 8(4), 2004, 551 - 566 563

= 0.512 N
5 0.08 5 0.08
3 o 0.06 ~ 2 0.06 0.317
~ B 5 82
8 2 0.04 2.5 0.04
£ 2002 £ 002
& @ 0.0 Station 01 wa Station 04
£ 0.00 — v T . T , & 0.007 ‘ \ ' | ' l
~ 0 1 2 3 ° 0 1 2 3
Frequency (Hz) 2 Frequency (Hz)
$ 0.08 Z ' 0.07
— _: 2]
g NE 0. 06__ 0.315 § .§ 0. 06
© 2 0.04 - — &~ 0.05
= ] ® o~
-~ 0.02 H 0. 04 -
? E g Station 05 ° ;"i T,5=1.1s At=0.005 s
3 0.00 ' T T ‘ 1 8. 003 T T T T T T T T T T T
0 1 2 3m§ 1 234 56 78 91011121314
Frequency (Hz) Station Number
Fig. 10. Specira of irregular waves and the variation along the numerical wave tank. The conditions are:
significant wave height H;,; = 2.5 cm, significant wave period T;,3= 1.1 sec, At = 0.005 sec,
and Ax,;, = 0.10h.
2.0 —
1.0 - \ \
0.0 - !
-1.0 — ‘ Station 01
2.0 —|
1.0 —
0.0 —
-1.0 — Station 03
= 2.0
e L0—
0.0 = .
§ -1.0 = Station 05
= 2.0
o 1.0 -]
5 0.0 )
< -1.03 Station 07
2.0 —
g 1.03
& (1)8:
8 -1.0 — .
a 2.0 Station 09
1.0 o
iE
2.0 — Station 11
1.0 —
0.0 =
1.0 Station 13
TTTTTT T T T T[T IO T T I [T I T T I I [T T T T T [T T[T T[T IIT[ 17171

[=]

10 20 30 40 50 60 70 80 90 100 110 120 130
Time (sec)

Fig. 11. Developments of irregular waves advancing from Station Nos. 1 ~ 13. The conditions are: significant
wave height, H,,;= 2.5 cm, significant wave period T3 =1.4 sec, At = 0.005 sec,and Ax;, = 0.10h.

discretization scheme. Figs. 9 and 10 are for a short significant wave period of T;5 = 1.1 sec,
whereas Figs. 11 and 12 are for 7,3 = 1.4 s. Even though the same significant wave period is used,
it seems that more waves are generated in Fig. 9 than in Fig. 7. A comparison of Figs. 10 and 12

leads to a similar conclusion, that is, waves with higher peak frequencies decrease faster in energy
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Fig. 12. Spectra of irregular waves and the variation along the numerical wave tank. The conditions are:
ficant wave height H,,; = 2.5 cm, significant wave period T}, = 1.4 sec, At = 0.005 sec, and Ax,, = 0.10Ah.

than low frequency waves.

The total length of our wave flume is 35 meters, as mentioned previously, and the first 20 meters
are for the propagation of irregular waves. For a wave spectrum with a significant wave period of 7’3
= 1.1 seconds, the corresponding characteristic wavelength is A, ~1.96 m. Depending on the signif-
icant wave periods, our computation time is in the range of 80 to 120 seconds. According to Xu and
Baddour’s (1999) review, the space domain of their computation is typically 10 times the characteris-
tic wavelength for simulating the generation and propagation of nonlinear, irregular waves, and their
typical simulation runs for at least 200 characteristic wave periods. Correspondingly, both the time and
space domains of our computation conform to those of Xu and Baddour; as a result, our numerical
scheme is comparable. However, unlike the results of Xu and Baddour, who applied the Green-Naghdi
fluid sheets theory, the present results are obtained by solving the nonlinear governing equations direct-

ly, and thus are believed to be more general.
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4. Conclusions

The generation and propagation of nonlinear random waves in a wave tank are studied numerically
with the boundary element method. A Bretschneider-Mitsuyasu type spectrum is used as the target
spectrum for irregular waves. The waves are generated by a piston-type wave generator installed at one
end of the flume, and are dissipated by a numerical absorbing beach at the other end of the flume.

Some conclusions may be drawn from the present study:

(1) Even though a relatively small discretization scheme, both spatially and temporally, are
used, as the waves propagate toward the end of the flume, the wave energies are seen to be dimin-
ished. This is true, no matter whether the waves have a large or a small significant wave period. For
waves with a large significant wave period, i.e., a low peak frequency, the energy decreases faster
than for waves with a small significant wave period.

(2) Since only one absorbing beach is used at the left end of the flume, low frequency waves
seem to have been reflected from the beach. This could explain at least in part, the reason why ener-
gies at the last four stations increase, instead of decreasing.

(3) During simulations, waves of very high frequencies can be generated. This is probably due to
the fact that extremely small discretization steps are used in the analyses. The smallness of the dis-
cretization steps can have the effect of generation of the so-called false waves on the one hand, and in-
crease the frequency resolution on the other. This is believed to be necessary, however, to maintain
the numerical stability of the present scheme.

(4) In some cases, wave groups with permanent forms appear to have been formed during propa-
gation. However, since the time for wave-wave interaction, and therefore for energy transfer between
wave components, is too short, it can be concluded that the appearance of wave groups with permanent
forms is only an artifact.

(5) In general, all the spectra from the fourteen measuring stations have an appearance similar to
that of the target spectrum. This is due to the fact that there are more simulated waves in the flume
than in the results of other researchers. It is believed that, albeit further improvements are necessary,

our algorithm is capable of simulating the generation and propagation of nonlinear random waves.
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