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ABSTRACT

A numerical model is developed by use of the boundary integral equation method to investigate the responses of a
two-dimensional floating structure. The structure under consideration consisting of two pontoons is connected by a rigid
framework and linked to the sea floor by a mooring system. The theoretical conception is based on potential theory with
linear external forces and applied to an arbitrarily shaped body and water depth. The discussion includes the influence of
draft and space between pontoons on the responses of the floating structure. Finally the validity of the method is ade-

quately verified by experimental results.
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1. Introduction

Floating structures are increasingly used in the nearshore regions to prevent wave energy or control
shoreline erosion. Owing to the various types and the advantage of easy installation floating structures
offer engineers another choice to design a suitable or relatively inexpensive structure for local environ-
ment e.g. weak foundation large tide range or special requirements e.g. aesthetic water circula-
tion and ecological considerations . Though floating structures have many excellences in environmental
improvement they are often preferred in relatively low wave energy regions.

Many discussions concerning the characteristics and efficiency of floating structures have been
made not only in various analytic theories but also in the improvement of structure type by many au-
thors in recent years. Some researchers e.g. Leonard et al. 1983  discussed the hydrodynamic
interference between floating cylinders in oblique sea by taking advantage of finite element method.
Mclver 1986 wused the method of matched eigenfunction expansions to investigate interaction effects
due to waves incident upon an adjacent floating bridge. Wang et al. 2006 showed the dynamic be-
havior of a pontoon-separated floating bridge by means of finite element method. Drimer et al. 1992
presented a simplified analytical model for a floating breakwater in finite water depth. Sannasiraj et al .

1998 utilized two-dimensional finite element methods to analyze the mooring forces and responses of
a single floating pontoon-type breakwater. On the other hand some researchers were devoted to the de-
velopment of the forms of floating structures and the investigation of the efficiency of structures. Mec-
Cartney 1985 classified floating breakwaters into four categories. Discussions including advantages

and disadvantages of structures mooring system anchorage methods etc. were presented in detail in
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that paper. Isaacson and Byres 1988 showed the responses of a floating breakwater and compared the
results with experimental and field data. Murali and Mani 1997 discussed the reflection and trans-
mission characteristics of cage floating breakwaters in an experimental manner.

A numerical model is developed for analyzing the behaviors of a floating structure by use of
boundary element method in this paper. The structure comprising two arbitrarily shaped pontoons is
connected by a rigid framework and linked to the seabed by a linear mooring system. Theoretical analy-
sis is based on potential theory with linear conditions and both scattering and radiating waves are dis-
cussed in the analytic process. A model test is carried out in a water tank to verify the numerical re-
sults. Finally the influences of each pontoon’ s dimensions and clear distance between pontoons on its

responses are discussed .
2. Theoretical Formulas

The definition sketch of the analyzed region is shown in Fig. 1. A floating structure consists of
two pontoons and is sited on a sea. Cartesian coordinates are employed and the z-axis is directed verti-
cally upwards from its origin on the undisturbed free surface. The structure is located symmetrically at
x =0. Each pontoon is linked to the sea floor by an idealized mooring system. The motions of the
structure are assumed to be small and linear when the structure is subjected to a train of small ampli-
tude waves of height ¢, and frequency o traveling in the negative x-direction. The fluid in the ana-
lyzed region are assumed to be inviscid and incompressible. On the above assumptions the motion of

fluid will be irrotational and can be described in terms of velocity potential @ x z t = g{y/o

$ x z e’ and the potential of the analyzed region must satisfy Laplace’ s equation.
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Fig. 1. Definition sketch.

The analyzed region will be further divided into three sub-regions to simplify the problem. Those
sub-regions are termed as region 1 x=1[, region2 -l <x<!, and region3 x< -1, and
their complex potentials denoted by ; j=1 2 3 . Region 2 includes the floating structure the flu-

id motion within this region will contain scattering and radiating effect. Regions 1 and 3 are set at the
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positions far away from the structure and are assumed to be beyond the disturbance caused by floating

structure’ s motions.

2.1 Potential of Regions 1 and 3

The potential of regions 1 and 3 can be described in the following form respectively

_ ik xol ik oxal coshk h + z
Pz = e o+ Ke l coshkh 2
_ Ke-ikxel, Coshk h+z
B0z = Ke i coshkh 3

where K, and K, in complex forms are coefficient of reflection and transmission respectively £k is
the incident wave number which is the root of the linear dispersion relation 62 = gk tanh kh . The po-
tential of regions 1 and 3 together with its normal derivative at auxiliary boundaries x = /| and x =

— [, can be expressed by

Si’1112=1+1<,% )
Sglllz=ik1_[(r% .
¢3—1222K[% 6
$s -1, z =_ik[<t% ,

2.2 Boundary Conditions of Region 2
Region 2 is enclosed by the free surface S, the immersed structure surface S, the impermeable
sea floor surface S, and two fictitious boundaries S; and S,. The boundary conditions on the free sur-

face and sea floor are subject to the following equations respectively

P 2
ai:i on z =20 8
g
— =0 on z=-h. 9

The requirements of continuity of mass and energy flux across the fluid interfaces between each re-

gion imply the following matching conditions

¢1 = ¢2 on X = l] 10
a¢ aé
Txl = sz on x = [ 11
¢, = ¢, on x =- I, 12
a¢ a¢
ax2 = 99: on X = — lz. 13

For the analysis of structure responses it is assumed that the structure behaves as a two-dimen-
sional rigid body and the structure will undergo small amplitude surge heave and pitch motions when
it is in response to the incident and diffracted waves. The displacement for those three mode motions

may then be expressed as
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iot iot iot
xg — %9 = &7 zy—zp = 77 & = we’ 14

in which  xy z, is the coordinate of the center of mass of the structure at rest and x, z, is its in-
stantaneous position & 7 and w are amplitude of surge heave and pitch motions respectively. The
first order kinematic boundary on the immersed surface of the structure may then be written as

J, d xg-x dx I z9—29 Iz IO

dx L9z "
an - 91 an * Ep an T oy

z — zp x - xg |- 15

on T an

The equations of motion of the structure under fluid pressure and external forces may be expressed

as
0 d2 _7 ) nooo
DmM:JPafxds+2F{C
0 dt s, on i1
H & oz -z d N
Dmiozosza—zds+Rz+ZF§ 16
O di S, n j=1
O
£ _ [ plox 9z | N
%Iydtz = . g, 270 T4, ¥ =% ds + M, + ; M

where m is the mass of the structure [, the mass moment of inertia about the center of mass of the
structure P the dynamic pressure of the fluid R, and M, are restoring force and moment and F,

F, and M are forces and moments acting upon the structure due to each mooring lines. The foregoing

pressure of the fluid and restoring components are given by

I

D . iot
g P=-073, =-iegtte
. )
- 9z
0 R, :—Jspg 20 — Zg ﬁds 17
D b
0 ) - dx - dz -
EM},:—JSpngO—xO I, 2% — 3, ¥ % ds

b

The mooring forces and moments F, F, and M, are caused by the linear system like

spring as shown in Fig. 1. Considering the j-th mooring line AB with its spring constant K’ and

pretension F the coordinates of attachment point on the structure and on the sea floor are x, z,
and =x, z, respectively. Ignoring the inertia effects of the mooring line and the viscous forces on
the line each component of forces and moments due to this mooring line can be expressed as
Fi j ; i . i
EFiZ—Kmxo—xo—szzo—zo—Kxag
E gZ—KJZx xo—xo—szzZO—Zo—szga 18
DM§=—K/&C xg — %9 — Kb, zg — 29 — Khd
where
X, — X z, — Z Fy
j a a 70
K, = 3 K +
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3. Development of the Theory

The above problem for the fluid potential of region 2 is solved numerically by use of the boundary
integral equation method. According to Green' s second identity law the potential of any point on the
boundaries of region 2 is subject to the potential on the boundaries together with its first normal deriva-
tive. It is written as

d d
95 x 2z — LJ [Mlni _ ¢ x z *(ln L)]ds 19
m)r, In r dn r

where In s the solution of Laplace equation. When the boundaries enclosing region 2 are parti-

tioned into N segments Eq. 19 has the following matrix form

¢,-=0L-,-{%Sj} ij=12 N . 20
3.1 Coefficients of Reflection and Transmission

The coefficient of reflection and transmission can be acquired by use of continuity of mass and en-
ergy flux on the fictitious boundaries. Substituting Eq. 5 into Eq. 11  multiplying the result with
coshk h + 2z and integrating from z = — h to z =0 one has the reflection coefficient K, in terms

of the normal derivatives of potential ¢, as
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. 0
K =1 %J $,coshk h + z dz  on =« 21

r * N,sinhkh) _,
where Ny = 1+42kh/sinh2kh /2.

Substituting Eq. 21 into Eq. 4  associating the result with Eq. 10  one can write the re-

1l
~

lation between the potential of the auxiliary boundary x =1, and its normal derivative as

61,z =oCoshk h+z  ,ocoshk b+ jéﬁ l, z coshk h + z ds. 22

coshkh Ngsinh2 kh

5

Similarly the coefficient of transmission can be obtained by way of substituting Eq. 7 into Eq.

13 multiplying the result with coshk h + z  and integrating from z = — h to z =0. It has the
following form
: 0
i -
K, = Nosinhkhj_hsﬁzcoshk h+zdz on x =-1,. 23
The relation between potential with its normal derivative on the auxiliary boundary x = - [,

can also be obtained through substituting Eq. 23 into Eq. 6  associating the result with Eq.

12 and is expressed as

¢ — 1, z :Zi%Ji—lzzcoshk h + z ds. 24
0

S )

3.2 Motions of Structure

Responses of a floating structure are not only affected by hydrodynamic forces of fluid induced
from scattering and radiating waves but by the effects of the mooring system. For simplicity the
mooring system is taken to be symmetric fore and aft of the structure. Some terms of mooring forces in-
fluencing the motions of the structure will be canceled out and Eq. 16 can then be simplified to a
simpler form. The motion amplitude of the structure can be obtained after arranging Eq. 16  in

terms of the potential ¢, on the immersed surface of structure as
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Egqs. 25a ~ 25c¢ are the amplitude of surge heave pitch motions of the structure respec-
tively. Substituting Eqs. 25a ~ 25c¢ into Eq. 15  associating the result with Eqs. 14a ~

14¢  the potential on immersed surface of structure can be written as

29, 02[ ca axj s
Sb

= — 5 S
dn glcics - caezdn ban
Cy ax (7x - (‘)z -
- b5 2 -zp -7 x - xy |ds
cicy — Cycz dn. s, dn dn
1 dz( dz C3 dx dz ) dx
| pyds - ——————| > z2-20 -5 x - xg ¢, =—ds
cs dn s, dn cicy — cye3ldn dn Js, In
(4 dx - dz - ]J $ dx - dz - ]d
— |5 2z -2y -5 x -« Z2—-2p — 53 X —X% st
cicy — cyezldn 0 dn 0 s, blan 0 an 0

27
By substituting Eqs. 8 9 22 24 and Eq. 27 into Eq. 20  one can obtain the
potential and its normal derivative on the boundaries of region 2. The motion amplitude of each mode

can be obtained also by means of substituting the potential on the immersed surface of the structure into

Egqs. 25a ~ 25¢

3.3 Forces on Mooring Lines

For a mooring line AB in Fig. 1 its coordinate of attachment point on the structure is transferred

from «x, z, to x,” z,) when the structure oscillates in response to fluid forces. The forces on the

mooring line can be estimated easily from lengthening ¢ and spring constant K., of mooring line AB

when mooring lines are treated as a linear system and is expressed as

Fy —ll . . Xp — %o . ’ 2o — 2o
b a [ T
%o %o

Kub gO - lab

: L0
+ Xp — Xg 2 — 20 — & — 3 Xqg — X . 28

%o
4. Results and Discussions

4.1 Comparison of Numerical and Experimental Results

A wave tank of 50 m in length and 1.2 m in width was used for a series of experiments for verifi-
cation of the numerical results. Water depth h was maintained at a constant 0.5 meter during the mod-
el test. A floating structure model with each rectangular pontoon width a =25 e¢m draft d = 15 ¢m
and clear distance between pontoons [ = 50 cm was sited in the wave tank for the experiment. The
length of test model was 117 ¢m in its axis direction Y axis . Therefore each gap between the model
edge and tank wall under consideration was about 1.5 ¢m. The other characteristics of the test model
were weight = 76.05 kg mass moment of inertia [, =9.82 kg m® and position of the center of mass
under free surface zy = — 12.1 cm. For simulation of the mooring system four taut springs were ap-
plied to moor the model each spring had a spring stiffness K = 0.275 kg/cm in the linear region and

an angle of inclination 54 .5° to the horizontal axis. All the above parameters of the model were normal-
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ized for the necessary input data of numerical computation and were given as stiffness K/ pgh =
0.094 pretension of each mooring line Fy/ pgh® =0.0246 mass of structure m/ pgh®> =0.26

mass moment of inertia [,/ pgh* =0.157 and dimensions of structure a/h =0.5 d/h=0.3 1/
h=1.0 and zy/h = —0.242 respectively.

Three-mode displacements of the floating structure and the reflection coefficients induced by the
structure were investigated during the model test. The reflection coefficients were obtained by means of
the analytic method of Goda and Suzuki 1976 . Acceleration transducers and angle sensors were
mounded on the structure for measuring displacements of the structure. The position of sensors is gen-
erally unable to consist with the center of mass of the model. Therefore the data from the sensors need
to be arranged again through coordinate transformation .

Figs. 2 ~ 4 illustrate the amplitude of three-mode motions of the structure modulating in dimen-
sionless wave period 6> h/g from the experiment and numerical calculation respectively. Essentially
the dimensionless amplitude of surge motion decreases monotonously when the wave period shortens
pitch motion has a peak value at the higher frequency o”h/g ~2.45. As regards the heave motion its
amplitude decreases gradually when the incoming wave period 6>h/g is less than 1.3 but it has a
peak value at 6>h/g~2.3. The results of reflection coefficient are shown in Fig. 5 and it generally
has an excellent performance in wave attenuation when the structure is affected by incoming waves with
a shorter period .

On the whole most experimental results are in sufficient correlation with numerical analysis re-
sults as observed from the comparisons. The prominent capability of dispersing wave energies and
structure motions is therefore confirmed here as being able to be validly predicted. However the pre-
dicted results of heave motion are apparently larger than the experimental results at its peak frequency.
It is believed that those differences may be induced by viscosity effects of fluid and energy losses from

the gap between the model and water tank .

2.0 2.0 -
«  Experimenta] results Numerical regults
by ————— Numerical results *  Bxporimental results
1.5
F 10t
ﬂ L
05| ',
0.0 . L f 1
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oh/g oh/g
Fig. 2. Comparison between numerical and Fig. 3. Comparison between numerical and
experimental results for surge motion. experimental results for heave motion.

a/h=0.5 d/h=0.3 [/h=1.0 0=54.5° a/h=0.5 d/h=0.3 [/h=1.0 0=54.5°
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Fig. 4. Comparison between numerical and Fig. 5. Comparison between numerical and
experimental results for pitch motion. experimental results for reflection coefficient.
a/h=0.5 d/h=0.3 1[/h=1.0 0=54.5° a/h=0.5 d/h=0.3 1/h=1.0 0=54.5°

4.2 Influence of Space Between Pontoons on Motions of Structure

The influences of space [ between pontoons on the motions of a floating structure are discussed
here. A structure composed of two pontoons and having its center of mass zo = — 0.5d is symmetrical-
ly sited on the sea. Each pontoon of width @ =0.25h and draft d = 0.25h is ideally assumed to be

homogeneous the mass and mass moment of inertia of the structure will therefore be calculated by a

presumed form expressed as m =2v,pad and I, = — v, pad %dz + 1 a*+ a+1?* respective-

2 3

ly. Coefficients v; and v, are dependent on the density and shape of the structure and are simply giv-
en the same constant value 0.9 in here. Having the stiffness K/ pgh =0.03 and the angle of incli-
nation 0 =60° each spring is moored on the edge of pontoon bottom. Pretension of each spring will be
given as Fo/ pgh® = 2ad/h*- m/ ph®> / 2sinf

Fig. 6 illustrates the variations of surge motion with a dimensionless period 6>h/g for various
spaces of pontoons. The figure demonstrates that the amplitude of surge motion decreases monotonously
with shortening wave period until the amplitude reaches a small value.

Fig. 7 shows the results for heave motion. The dimensionless amplitude of heave motion will ap-
proach to a constant value when the structure is affected by a longer period wave and then will have a
monotonic decrease with the shortening wavelength. Besides heave motion in the ranges analyzed has
a peak response which appears in a higher frequency range except for the case of small space between
pontoons [ =0.1h. It has a tendency that a longer space between pontoons will lead to a lower fre-
quency of peak response. Those phenomena are different from the behavior of single floating bodies and
it is believed that those variations are caused by the space between pontoons .

The influences of space between pontoons on pitch motion are shown in Fig. 8. As can be seen
the peak frequency of pitch motion trends down as the space between pontoons increases gradually and
the value of peak response also decays. The main reason is that a longer space will give the structure a

larger mass moment of inertia and a larger restoring moment .
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Fig. 6. Influence of space between pontoons Fig. 7. Influence of space between pontoons
on surge motion. on heave motion.
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Fig. 8. Influence of space between pontoons Fig. 9. Relation between peak responses of
on pitch motion. heave motion and space.
a/h=d/h=0.25 K/ pgh =0.03 0=060° a/h=0.25 d/h=0.5 K/ pgh =0.05 0=30°

According to the above results the space has a great effect upon the structure’ s motions it not
only changes the peak frequency of pitch motion but induces a peak response of heave motion at a
high frequency. Those peak frequencies of heave motion will have a correlation between each other if
floating structures are under the same conditions but with different spaces between pontoons. Fig. 9 il-
lustrates the relations between heave motions and parameter kl for three cases [/h =0.25 0.5 and
1.0. The conditions of the structure are width @ =0.25h draft d =0.5h of each pontoon and cen-

ter of mass zg= —0.5d . The stiffness of the mooring line and its angle of inclination are K/ pgh =

0.05 and 0 =30° respectively. As can be seen heave motion has its peak response located at kl =
2.0472 1.0282 and 0.514 for [/h =1.0 0.5 and 0.25. The kl of peak response is found to have
linear relation to space of pontoons [/h . For the case [/h =1.0 the kl of peak response is twice of
case [/h =0.5 and is four times of the case [/h =0.25. The results for another case a =d =
0.5h K/ pgh =0.06 and 0 =90° i.e. tension leg type  are shown in Fig. 10. It also displays

the same relations as described above notwithstanding the frequencies of peak responses are different
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from each other. Obviously parameter kl is a very important factor for the peak response of heave mo-

tion and the understanding of its influence will be useful for the applications of this kind of floating

structures .
5

- — =025

I/h=05

I/h=10
o
—
=

| “'-‘1“'----4 _____ Lo
1.5 20

Fig. 10. Relation between peak responses of heave motion and space.

a/h=d/h=0.5 K/ pgh =0.06 0=90°

4.3 Influences of Pontoon Dimension on Motions of Structure

The influences of pontoon dimension on the motions of the structure are shown in Figs. 11 ~ 13
for pontoon draft d/h =0.25 0.375 and 0.5. In those cases all structure parameters including
pontoon width distance between pontoons stiffness and angle of inclination of mooring lines are kept
constant expect for the center of mass of the structure. The coordinate of the center of mass in the
above cases is similarly taken as zo = —0.5d and it changes with the pontoon draft.

Figs. 11 ~ 13 illustrate the normalized amplitude of three mode motions surge pitch and heave
as a function of dimensionless period 6>h/g respectively. The variations of surge motion as can be
seen from Fig. 11 do not have a large difference when the pontoon draft is changed. The peak fre-
quency of pitch motion as shown in Fig. 12 obviously has a tendency towards longer period as pon-
toon draft is increased. It can be understood that the floating structure with a larger draft will cause a
larger mass moment of inertia and will induce a lower frequency of peak response. Although the char-
acteristic of structure’ s motions in surge and pitch mode is obvious and comprehensible it is still diffi-
cult to distinguish between the variations of a dual pontoon structure and a single floating body when
one observes those two mode motions from Figs. 11 and 12.

The results for heave motion as shown in Fig. 13 are similar to the behavior of a single floating
body in low frequency range but they often have a peak response in high frequency range. The fre-
quency of peak response also has a tendency to decrease when the pontoon draft increases implying

that the peak response of heave motion at high frequency is subject not only to the space between pon-
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toons but to the forces of the mooring system hydrodynamic buoyancy mass of the structure etc.

B 5
— d/h=025 |
d/h=025 | T ... d/h=0375
------ =0375 Aledrn=05}}
........ =0.5 '
J 3r P
= |
3 2f
ik
.- ey =
0 1 /fﬂ-t?' 0 &
0 1 2 3 4 0 ! 2 3 4
oh/g oh/g
Fig. 11. The influence of pontoon draft Fig. 12. The influence of pontoon draft
on surge motion. on pitch motion.
a/h=d/h=0.25 K/ pgh =0.05 a/h=d/h=0.25 K/ pgh =0.05
I/h=0.5 0=45° I/h=0.5 0=45°

Bt

Fig. 13. The influence of pontoon draft

Fig. 14. Effect of stiffness on surge response.

on heave motion.
a/h=d/h=0.25 K/ pgh =0.05
I/h=0.5 0 =45

4.4 Influences of Stiffness of Mooring Cable on Structure’ s Responses

A floating dual pontoon structure with each pontoon width @ = 0.25h draft d =0.25h and
space between pontoons [ = 0.5h is investigated for understanding the influences of the stiffness of
the mooring system on structure’ s responses. The results are shown in Figs. 14 ~ 16 for four stiffnesses
of the mooring lines K/ pgh =0.12 0.08 0.04 and 0.0. The angle inclination of each mooring
line is kept to 0 = 60° during numerical analysis.

Fig. 14 demonstrates the relationship between the normalized amplitude of surge motion and the
parameter kl. As can be seen the influences of various stiffnesses of the cable are not very obvious for
surge motion of the structure. The amplitude of heave motion is described in Fig. 15 and all the re-
sults have an identical zero value at the frequency of kl =~ 1.1 when the stiffness of the cable changes
from 0.0 to 0.12. The overall modulation of heave motion has not large differences from that for a sin-

gle floating structure except for the region of £l =1.1. As can be seen from Fig. 15 the peak re-
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sponse of heave in the region kl = 1.1 tends to have higher frequency with the increasing stiffness of
the mooring system. Pitch motion as illustrated in Fig. 16 also changes its peak frequency to a higher

frequency region when the structure is linked by a cable of larger stiffness.

5 4
T —-— K/(pgh)=0.12 — T K/ (egh0.12
4p s m?’ihﬁ = (.08 T K/ (pgh)=0.08
Lo K/fgh) =0.04 A 3
K/égk) =0.0 . — - i .
F IF . WK BPGR
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Fig. 15. Effect of stiffness on heave response. Fig. 16. Effect of stiffness on pitch response.

5. Conclusion

A numerical model has been developed by means of the boundary element method for the analysis
of the two-dimensional linearized hydrodynamic problem of a floating dual pontoon structure. Compar-
isons between numerical results and experimental ones show good agreement for a wide range of param-
eters and the validity of this method is therefore confirmed.

The results obtained here indicate that the clear space between pontoons is an important parameter
for the behaviors of a floating dual pontoon structure. The clear space has a great effect upon responses
of the structure it not only changes the natural frequency of the structure but causes heave motion to
have a peak response in high frequency range. However the responses of the floating dual pontoon

structure gradually become similar to a single floating body’ s with the shortening clear distance .
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